Extraction of m_s and $|V_{us}|$
from Hadronic Tau Decays

Joaquim Prades
CAFPE and Universidad de Granada

with Elvira Gámiz (U. Glasgow), Matthias Jamin (U. Heidelberg),
Antonio Pich (U. València) and Felix Schwab (U. München)

TAU 2004, 14-9-04 Nara
Plan

Introduction: Theoretical Framework
Introduction: Theoretical Framework

Fixed m_s: Determination of $|V_{us}|$
Plan

Introduction: Theoretical Framework

Fixed m_s: Determination of $|V_{us}|$

Fixed $|V_{us}|$: Determination of m_s
Plan

▶ Introduction: Theoretical Framework
▶ Fixed m_s: Determination of $|V_{us}|$
▶ Fixed $|V_{us}|$: Determination of m_s
▶ Combined Fit to Determine $|V_{us}|$ and m_s
Plan

- Introduction: Theoretical Framework
- Fixed m_s: Determination of $|V_{us}|$
- Fixed $|V_{us}|$: Determination of m_s
- Combined Fit to Determine $|V_{us}|$ and m_s
- Results and Conclusions
ALEPH, OPAL and CLEO → High precision status of

\[R_\tau \equiv \frac{\Gamma[\tau^- \rightarrow \text{hadrons } \nu_\tau(\gamma)]}{\Gamma[\tau^- \rightarrow e^- \nu_e \nu_\tau(\gamma)]} \]

[and related observables] further increase at B-factories.

Sizeable correction in the semi-inclusive \(\tau \)-decay width into Cabibbo-suppressed modes due SU(3) breaking.

Obtain the strange quark mass and \(|V_{us}| \).

Advantage: The experimental uncertainty can be systematically reduced!
Introduction: Theoretical Framework

A lot of work!

- M. Davier
- S. Chen, A. Höcker, M. Davier
- K. Maltman
- K. Chetyrkin, J. Kühn, A. Pivovarov
- A. Pich, J.P.

Very much improvable with expected B-factories accuracy!
Two-point correlation functions for vector $V^\mu_{ij} = \bar{q}_i \gamma^\mu q_j$ and axial-vector $A^\mu_{ij} = \bar{q}_i \gamma^\mu \gamma^5 q_j$ two-quark currents:

$$\Pi^{\mu \nu}_{V, ij}(q) \equiv i \int d^4 x \, e^{i q \cdot x} \langle 0 | T \left(\left[V^\mu_{ij} \right]^\dagger (x) V^\nu_{ij} (0) \right) | 0 \rangle$$

$$\Pi^{\mu \nu}_{A, ij}(q) \equiv i \int d^4 x \, e^{i q \cdot x} \langle 0 | T \left(\left[A^\mu_{ij} \right]^\dagger (x) A^\nu_{ij} (0) \right) | 0 \rangle$$

$i, j = u, d, s$;

Lorentz decomposition:

$$\Pi^{\mu \nu}_{V(A), ij}(q) \equiv \left[q^\mu q^{\nu} - q^2 g^{\mu \nu} \right] \Pi^{T}_{V(A), ij}(q^2) + q^\mu q^{\nu} \Pi^{L}_{V(A), ij}(q^2)$$

$\text{Im} \, \Pi^{J}_{V(A), ij}(q^2)$ are proportional to the corresponding spectral functions.
Introduction: Theoretical Framework

Using the analytic properties of $\Pi^J(s)$

\[R_\tau \equiv -i\pi \oint_{|s|=M_\tau^2} \frac{ds}{s} \left[1 - \frac{s}{M_\tau^2} \right]^3 \left\{ 3 \left[1 + \frac{s}{M_\tau^2} \right] D^{L+T}(s) + 4D^L(s) \right\} ; \]

phase space factors: order three zero in real axis

\[D^{L+T}(s) \equiv -s \frac{d}{ds} [\Pi^{L+T}(s)] ; \quad D^L(s) \equiv s \frac{d}{ds} \left[s \Pi^L(s) \right] . \]

Large enough Euclidean $Q^2 \sim \Pi^{L+T}(Q^2)$ and $\Pi^L(Q^2)$ organised in series of dimensional operators using OPE
Moreover, we can decompose R_{τ} into

$$R_{\tau} \equiv R_{\tau, V} + R_{\tau, A} + R_{\tau, S}$$

according to the quark content

$$\Pi^{J}(s) \equiv |V_{ud}|^2 \{ \Pi^{J}_{V, ud}(s) + \Pi^{J}_{A, ud}(s) \} + |V_{us}|^2 \{ \Pi^{J}_{V, us}(s) + \Pi^{J}_{A, us}(s) \} \bullet$$

Additional information obtained from the moments

$$R^{kl}_{\tau} \equiv \int_{0}^{1} dz \ (1 - z)^{k} z^{l} \frac{dR_{\tau}}{dz} \equiv R^{kl}_{\tau, V + A} + R^{kl}_{\tau, S} \bullet$$
Introduction: Theoretical Framework

\[R_{\tau}^{kl} \equiv N_c \, S_{\text{EW}} \left(|V_{ud}|^2 + |V_{us}|^2 \right) \left[1 + \delta^{kl(0)} \right] + \sum_{D \geq 2} \left[|V_{ud}|^2 \delta^{kl(D)}_{ud} + |V_{us}|^2 \delta^{kl(D)}_{us} \right] \]

\[\delta^{kl(D)}_{ud} \text{ and } \delta^{kl(D)}_{us} \sim \text{dimension } D\text{-operators} \]

The most important being \(D = 2 \left[m_s^2 \right] \) and \(D = 4 \left[m_s \langle \bar{q}q \rangle \right] \).

The flavour SU(3)-breaking quantity

\[\delta R_{\tau}^{kl} \equiv \frac{R_{\tau,V+A}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} = N_c \, S_{\text{EW}} \sum_{D \geq 2} \left[\delta^{kl(D)}_{ud} - \delta^{kl(D)}_{us} \right] \]

enhances the sensitivity to the strange quark mass.
Introduction: Theoretical Framework

\[\delta_{ij}^{kl(2)} \text{ known to } \mathcal{O}(a^3) \text{ for } J = L \text{ and } \mathcal{O}(a^2) \text{ for } J = L + T \]

Chetyrkin; Gorishny, Kataev, Larin, Sugurladze; Chetyrkin, Kühn; Becchi, Narison, de Rafael; Bernreuther, Wetzel

Extensive analysis by Pich & J.P.

Perturbative \(L + T \) series converges very well \(\checkmark \)

Perturbative \(L \) series behaves very badly!

In following applications, \[\delta_{ij}^{kl(4)} \] fully included while \[\delta_{ij}^{kl(6)} \]
estimated to be of order or smaller than error of \(D = 4 \) \(\bullet \)
Fixed m_s: Determination of $|V_{us}|$

QCD Sum Rules, Lattice QCD and Tau Hadronic Data:

$m_s[2\text{GeV}] = 95 \pm 20 \text{ MeV} \sim \delta R_{\tau}^{kl}$ predicted from theory!

Bad QCD behaviour of $J = L$ component in δR_{τ}^{kl}

Theory uncertainty much reduced using phenomenology for scalar/pseudoscalar correlators ✓

Dominant pseudoscalar u_8 spectral function

$$s^2 \frac{1}{\pi} \text{Im} \Pi_{u_8, A}^L = 2f_K^2 m_K^4 \delta(s - m_K^2) + 2f_{K(1460)}^2 M_{K(1460)}^4 BW(s);$$

Normalized Breit-Wigner: Kambor, Maltman
Scalar spectral functions from M. Jamin, J.A. Oller, A. Pich

Comparison of these spectral functions with QCD

<table>
<thead>
<tr>
<th></th>
<th>$R_{us,A}^{00,L}$</th>
<th>$R_{us,V}^{00,L}$</th>
<th>$R_{ud,A}^{00,L} \times 10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPE</td>
<td>-0.144 ± 0.024</td>
<td>-0.028 ± 0.021</td>
<td>-7.79 ± 0.14</td>
</tr>
<tr>
<td>Pheno.</td>
<td>-0.135 ± 0.003</td>
<td>-0.028 ± 0.004</td>
<td>-7.77 ± 0.08</td>
</tr>
</tbody>
</table>

★ Perturbative QCD for $J = L + T$ converges very well and OPE included up to $D = 6$ ★

$\delta R_T^{kl,L}$ from phenomenology while $\delta R_T^{kl,L+T}$ from QCD ●
Fixed m_s: Determination of $|V_{us}|$

Smallest theory uncertainty for $(k, l) = (0, 0)$

$$
\delta R_{\tau,th}^{00} = (0.162 \pm 0.013) + (6.1 \pm 0.6)m_s^2 - (7.8 \pm 0.8)m_s^4 = 0.218 \pm 0.026
$$

(Coefficients are MS-bar at 2 GeV)

$$
|V_{us}|^2 = \frac{R_{\tau,S}^{kl}}{R_{\tau,V+A}^{kl}/|V_{ud}|^2 - \delta R_{\tau,th}^{kl}}
$$

Using OPAL update:

★ OPAL and CLEO: New branching fraction $B(\tau^- \to K^-\pi^+\pi^-\nu)$

★ $R_{\tau,V+A} = 3.469 \pm 0.014$ and $R_{\tau,S} = 0.1677 \pm 0.0050$
Fixed m_s: Determination of $|V_{us}|$

$$|V_{us}| = 0.2208 \pm 0.0033_{\text{exp}} \pm 0.0009_{\text{th}} = 0.2208 \pm 0.0034$$

(using PDG value $|V_{ud}| = 0.9738 \pm 0.0005$)

Uncertainty becomes experimental issue!

PDG 2004: $|V_{us}| = 0.2200 \pm 0.0026$

KI3 (E865, KTeV, KLOE):
Jamin et al, $|V_{us}| = 0.2229 \pm 0.0026$ to Leutwyler-Roos 0.2259 ± 0.0022

f_K/f_π Marciano, MILC: $V_{us} = 0.2219 \pm 0.0026$

Unitarity: $|V_{us}| = 0.2265 \pm 0.0022$

Remark: If experimental $B(\tau \rightarrow K\nu) = (0.686 \pm 0.023)\%$ is replaced by more precise theoretical value $(0.715 \pm 0.004)\%$

based on $K_{\mu2}$ decay $\Rightarrow |V_{us}| = (0.2219 \pm 0.0034)$
Fixed $|V_{us}|$: Determination of m_s

Using OPAL data with $|V_{us}| = 0.2208 \pm 0.0034$ and $\delta R^{kl,L}_{\tau,\text{phen}}$

$$\delta R^{kl,L+T}_{\tau} = \delta R^{kl}_{\tau} - \delta R^{kl,L}_{\tau,\text{phen}}$$

$$m_s^2(M_\tau^2) \approx \frac{M_\tau^2}{1 - \varepsilon_d^2} \frac{1}{\Delta_{kl}^{L+T(2)}(a_{\tau})} \left[\frac{\delta R^{kl,L+T}_{\tau}}{18 S_{EW}} + \frac{8}{3} \pi^2 \frac{\delta O_4(M_\tau^2)}{M_\tau^4} Q_{kl}^{L+T}(a_{\tau}) \right]$$

known in perturbative QCD: very good convergence

$$\delta O_4(M_\tau^2) \equiv \langle m_s \bar{s}s - m_d \bar{d}d \rangle \approx -[1.5 \pm 0.4]10^{-3} \text{ GeV}^4$$

and $\varepsilon_d \equiv m_d/m_s$
Fixed $|V_{us}|$: Determination of m_s

Moments $(0, 0)$ and $(1, 0)$ dominated by experimental uncertainty, we only use

<table>
<thead>
<tr>
<th>$(2, 0)$</th>
<th>$(3, 0)$</th>
<th>$(4, 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_s(M_\tau)$ MeV</td>
<td>93.2^{+34}_{-44}</td>
<td>86.3^{+25}_{-30}</td>
</tr>
</tbody>
</table>

Weighted average

$m_s(M_\tau) = [84 \pm 23]$ MeV
$m_s(2\text{GeV}) = [81 \pm 22]$ MeV

★ Larger OPAL $B(\tau^- \to K^-\pi^+\pi^-\nu)$

~ reduced the strong ALEPH $(k,0)$-moment dependence in m_s

~ smaller value for m_s $(115\pm 20 \to 85 \pm 20)$ MeV
Combined Fit to $|V_{us}|$ and m_s

Ultimate procedure

- **Simultaneous fit to** $|V_{us}|$ and m_s for a set of moments.

First step, **neglect the correlations** and use the five OPAL moments R_{00} to R_{40}.

Fit

$|V_{us}| = 0.2196$ and $m_s(2\text{GeV}) = 76 \text{ MeV}$

Compatible with previous results
Combined Fit to $|V_{us}|$ and m_s

- Rather strong correlations \rightarrow expected uncertainties similar to individual ones.

- Moment-dependence of m_s is reduced in the fit.

Full analysis including correlations is under way!
Results and Conclusions

High precision tau hadronic (Cabibbo-suppressed) data from ALEPH, OPAL at LEP and CLEO at CESR provide already competitive results on $|V_{us}|$ and m_s.

Using OPAL spectral functions:

$|V_{us}| = 0.2208 \pm 0.0034$

$m_s(2\text{GeV}) = [81 \pm 20] \text{ MeV}$

Combined fit to determine both $|V_{us}|$ and m_s ready soon!
Open questions:

- Moment dependence of m_s very much reduced after OPAL and CLEO new $B(\tau^- \rightarrow K^-\pi^+\pi^-\nu)$
- what happens with $K\pi\pi\pi$?
- Origin of remaining moment dependence?

- ALEPH data, (S. Chen et al)
 m_s determination fulfils quark-hadron duality and OPE,
 what happens with $|V_{us}|$? (see K. Maltman’s talk)

- Low experimental $B(\tau \rightarrow K\nu)$ compared to theoretical prediction based on $K\mu_2$ decays?
Results and Conclusions

Previous issues: theoretical or experimental origin?

~ need more accurate measurements combined with theoretical analyses!

★ With expected B-factories accuracy, \(\tau \) hadronic decays have the potential to provide one of the most accurate measurements for \(|V_{us}| \) and \(m_s \)!