

Measurement of the Strangeness Spectral Function and the Mass of the Strange Quark with the OPAL Detector at LEP

Wolfgang Mader

The University of Iowa

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERS

Wolfgang Mader

Tau04 09/14 - 09/17 2004

Page 1/28

Outline

Introduction

- Experimental Aspects
- Selection of Signal Channels
- Results
- Conclusion

Introduction

- Experimental Aspects
- Selection of Signal Channels
- Results
- Conclusion

- **9** QCD in au-Decays
- Decay Channels with Net-Strangeness
- **The** OPAL **Detector**

τ -Hadronic Width R_{τ} :

- Naïve Parton Model: $R_{\tau} = 3$
- Measurement:

$$R_{\tau} = N_c \quad (|V_{ud}|^2 + |V_{us}|^2 \quad)S_{ew}$$

$$(1 \quad +\delta_{pert}(\alpha_s) \qquad (\approx 20\%)$$

$$+\delta_{non-pert} \qquad (\approx 2\%)$$

$$+\delta_{ew} \qquad (\approx .01\%) \qquad) \approx 3.65$$

Input Quantities for QCD Studies:

Spectral Functions

$$\begin{split} v_J^{\rm S}(s)/a_J^{\rm S}(s) &= \frac{m_\tau^2}{6|V_{\rm us}|^2 S_{\rm ew}} \left(1 - \frac{s}{m_\tau^2}\right)^{-2} \left(1 + \frac{2s}{m_\tau^2}\right)^{-J} \\ &\times \frac{B(\tau \to ({\rm V/A})^{(S=-1)}\nu_\tau)}{B(\tau \to e^- \bar{\nu}_e \nu_\tau)} \frac{1}{N_{\rm V/A}} \frac{{\rm d}N_{\rm V/A}}{{\rm d}s} \end{split}$$

Spectral Function in non-strange τ Decays:

OPAL: (Eur.Phys.J.C7:571-593,1999)

$$\alpha_{\rm s}(m_{\tau}^2) = 0.348 \pm 0.010_{\rm exp} \pm 0.019_{\rm theo}$$

 $\alpha_{\rm s}(m_{\rm Z^0}^2) = 0.1219 \pm 0.0010_{\rm exp} \pm 0.0017_{\rm theo}$

ALEPH: (Eur.Phys.J.C4:409-431,1998)

$$\alpha_{\rm s}(m_{\tau}^2) = 0.334 \pm 0.022$$

 $\alpha_{\rm s}(m_{\rm Z^0}^2) = 0.1202 \pm 0.0027$

Spectral Function in strange τ -Decays:

- Existing Measurements
 - **OPAL: (Eur.Phys.J.C35:437-455,2004)**
 - ALEPH: (Eur.Phys.J.C11:599-618,1999)
- Depends on, e.g.
 - **9** Measurement of $(lpha_{
 m s})_{
 m strange}$
 - $\,$ $\,$ Determination of the Strange Quark Mass $m_{
 m s}$
 - Measurement of the CKM Matrix Element $V_{
 m us}$

		Measure	эd	Monte Ca	rlo
	$B_{ m total}/\%$	$ au - { m Decay}$	$B_{ m PDG}/\%$	$\tau-{ m Decay}$	$B_{ m PDG}/\%$
(K) ⁻	$0.686 {\pm} 0.023$			$\tau^- \rightarrow \mathrm{K}^- \nu_{\tau}$	0.686 ± 0.023
$(K\pi)^{-}$	$1.340 {\pm} 0.050$				
$(K\pi\pi)^{-}$	$0.708 {\pm} 0.068$				
$(K\pi\pi\pi)^-$	0.150 ± 0.045				
$\sum B_{ m strange}^{ m total}$		$\sum B_{ m strange}^{ m meas}$		$\sum B_{\text{strange}}^{\text{external}}$	

Remarks

 $\mathbf{P} \quad \tau^- \to \mathrm{K}^- \nu_\tau \text{ from PDG}$

		Measure	ed	Monte Ca	arlo
	$B_{ m total}/\%$	$ au - { m Decay}$	$B_{ m PDG}/\%$	$ au - ext{Decay}$	$B_{ m PDG}/\%$
(K) ⁻	$0.686 {\pm} 0.023$			$\tau^- \rightarrow \mathrm{K}^- \nu_{\tau}$	0.686±0.023
$(K\pi)^-$	$1.340 {\pm} 0.050$	$\begin{array}{c} \tau^- \to \mathbf{K}^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^0 \pi^- \nu_\tau \end{array}$	$0.450 {\pm} 0.030$ $0.890 {\pm} 0.040$		
$(K\pi\pi)^-$	$0.708 {\pm} 0.068$				
$(K\pi\pi\pi)^-$	$0.150 {\pm} 0.045$				
$\sum B_{ m strange}^{ m total}$		$\sum B_{ m strange}^{ m meas}$		$\sum B_{ m strange}^{ m external}$	

Remarks

 $\mathbf{P} \quad \tau^- \to \mathrm{K}^- \nu_\tau \text{ from PDG}$

		Measur	ed	Monte Ca	arlo
	$B_{ m total}/\%$	$ au - ext{Decay}$	$B_{ m PDG}/\%$	$ au - { m Decay}$	$B_{ m PDG}/\%$
(K) ⁻	$0.686 {\pm} 0.023$			$\tau^- \rightarrow \mathrm{K}^- \nu_{\tau}$	0.686±0.023
$(K\pi)^-$	$1.340 {\pm} 0.050$	$\begin{array}{c} \tau^- \to \mathbf{K}^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^0 \pi^- \nu_\tau \end{array}$	$0.450 {\pm} 0.030$ $0.890 {\pm} 0.040$		
$(K\pi\pi)^-$	$0.708 {\pm} 0.068$	$\begin{array}{c} \tau^- \to \mathbf{K}^0 \pi^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^- \pi^+ \pi^- \nu_\tau \end{array}$	0.370 ± 0.040 0.280 ± 0.050	$\tau^- \rightarrow \mathbf{K}^- \pi^0 \pi^0 \nu_\tau$	0.058 ± 0.023
$(K\pi\pi\pi)^-$	$0.150 {\pm} 0.045$				
$\sum B_{ m strange}^{ m total}$		$\sum B_{ m strange}^{ m meas}$		$\sum B_{ m strange}^{ m external}$	

Remarks

 ${}^{}$ $\tau^-
ightarrow {\rm K}^-
u_{ au}$ from PDG

		Measure	ed	Monte Ca	rlo
	$B_{ m total}/\%$	$ au - { m Decay}$	$B_{ m PDG}/\%$	au-Decay	$B_{\mathrm{PDG}}/\%$
(K) ⁻	$0.686 {\pm} 0.023$			$\tau^- \rightarrow \mathrm{K}^- \nu_{\tau}$	0.686±0.023
$(K\pi)^{-}$	$1.340 {\pm} 0.050$	$\begin{array}{c} \tau^- \to \mathbf{K}^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^0 \pi^- \nu_\tau \end{array}$	$0.450 {\pm} 0.030$ $0.890 {\pm} 0.040$		
$(K\pi\pi)^-$	$0.708 {\pm} 0.068$	$\begin{array}{c} \tau^- \to \mathbf{K}^0 \pi^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^- \pi^+ \pi^- \nu_\tau \end{array}$	0.370 ± 0.040 0.280 ± 0.050	$\tau^- \!\rightarrow\! \mathrm{K}^- \pi^0 \pi^0 \nu_\tau$	0.058 ± 0.023
$(K\pi\pi\pi)^-$	$0.150 {\pm} 0.045$	$\tau^- \to \mathrm{K}^- \pi^+ \pi^- \pi^0 \nu_\tau$	0.064 ± 0.024	$\begin{array}{c} \tau^{-} \rightarrow \mathbf{K}^{0} \pi^{-} \pi^{0} \pi^{0} \nu_{\tau} \\ \tau^{-} \rightarrow \mathbf{K}^{-} \pi^{0} \pi^{0} \pi^{0} \nu_{\tau} \\ \tau^{-} \rightarrow \mathbf{K}^{0} \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \end{array}$	$\begin{array}{c} 0.026 {\pm} 0.024 \\ 0.037 {\pm} 0.021 \\ 0.023 {\pm} 0.020 \end{array}$
$\sum B_{ m strange}^{ m total}$		$\sum B_{ m strange}^{ m meas}$	$2.054 {\pm} 0.085$	$\sum B_{ m strange}^{ m external}$	0.144 ± 0.044

Semarks

- $\tau^- \to K^- \nu_{\tau}$ from PDG
- **●** For Final States $(K\pi)^-$, $(K\pi\pi)^-$ and $(K\pi\pi\pi)^-$, 93.4% are Reconstructed

		Measure	ed	Monte Ca	rlo
	$B_{ m total}/\%$	$ au - { m Decay}$	$B_{ m PDG}/\%$	$ au - { m Decay}$	$B_{ m PDG}/\%$
(K) ⁻	$0.686 {\pm} 0.023$			$\tau^- \rightarrow \mathrm{K}^- \nu_{\tau}$	0.686 ± 0.023
${\rm (K\eta)^-} \ {\rm (K\pi)^-}$	$0.027 {\pm} 0.006$ $1.340 {\pm} 0.050$	$\begin{array}{c} \tau^- \to \mathbf{K}^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^0 \pi^- \nu_\tau \end{array}$	0.450 ± 0.030 0.890 ± 0.040	$\tau^- \rightarrow \mathbf{K}^- \eta \nu_{\tau}$	0.027±0.006
$(K\pi\pi)^{-}$ $(K^{*}(892)\eta)^{-}$	0.708 ± 0.068 0.029 ± 0.009	$\begin{array}{c} \tau^- \to \mathbf{K}^0 \pi^- \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^- \pi^+ \pi^- \nu_\tau \end{array}$	0.370 ± 0.040 0.280 ± 0.050	$ \begin{array}{c} \tau^- \to \mathbf{K}^- \pi^0 \pi^0 \nu_\tau \\ \tau^- \to \mathbf{K}^* (892)^- \eta \nu_\tau \end{array} $	0.058 ± 0.023 0.029 ± 0.009
$(K\pi\pi\pi)^-$	0.150 ± 0.045	$\tau^- \rightarrow \mathrm{K}^- \pi^+ \pi^- \pi^0 \nu_\tau$	0.064 ± 0.024	$\begin{array}{c} \tau^{-} \rightarrow \mathbf{K}^{0} \pi^{-} \pi^{0} \pi^{0} \nu_{\tau} \\ \tau^{-} \rightarrow \mathbf{K}^{-} \pi^{0} \pi^{0} \pi^{0} \nu_{\tau} \\ \tau^{-} \rightarrow \mathbf{K}^{0} \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \end{array}$	$\begin{array}{c} 0.026 {\pm} 0.024 \\ 0.037 {\pm} 0.021 \\ 0.023 {\pm} 0.020 \end{array}$
$\sum B_{ m strange}^{ m total}$	$2.940 {\pm} 0.099$	$\sum B_{ m strange}^{ m meas}$	$2.054{\pm}0.085$	$\sum B_{ m strange}^{ m external}$	0.200 ± 0.045

Remarks

- $\tau^-
 ightarrow {
 m K}^-
 u_{ au}$ from PDG
- ▶ For Final States $(K\pi)^-$, $(K\pi\pi)^-$ and $(K\pi\pi\pi)^-$, 93.4% are Reconstructed
- **●** Final States $K^- \eta \nu_{\tau}$ und $K^* (892)^- \eta \nu_{\tau}$ from Monte Carlo

The Omni Purpouse Apparatus at LEP

- Analysis based on LEP-I DATA (1990-95)
- Number of selected τ Pair Candidates: 162477

Introduction

- Experimental Aspects
- Selection of the Signal Channels
- Results
- Conclusion

- **J** Identification of K (dE/dx Measurement)
- Reconstruction of Photonen
- \checkmark Reconstruction of $K^0_{\rm S}$

Typical τ -Event

- Event Signature
 - Back-to-back Jets
 - Small Number of Tracks
 - **9** Strongly collimated ($\gamma pprox 25$)
 - Energy Deposits in ECAL/HCAL

Typical τ **-Event**

- OPAL Drift Chamber
 - Optimized for Particle Identification
 - Argon/Methan/IsoButan (88.2%/9.8%/2.0%)
 - Pressure: 4bar
 - 159 Measurements/Track (Barrel)

- K^- - π^- -Identification
 - **9** Energy Loss Measurement (dE/dx)
 - **•** Momentum Range $3 \,\mathrm{GeV} < p_{\mathrm{K}} < 35 \,\mathrm{GeV}$
 - **9** Separation of $> 2\sigma$ (10% absolute)

$\mathrm{d}E/\mathrm{d}x$ Calibration

- Correction using Reference Pulse (RP)
- Systematic Deviations
 - $\Delta t = 200 \, \mathrm{ns}(\hat{=}1 \, \mathrm{cm})$: $\approx 10\%$ too low
 - ${f 9}$ $400 < \Delta t < 1000\,{
 m ns}$: pprox 5% too high
 - $\Delta t > 1000\,\mathrm{ns}$: (7-8)% too low
- Improved RP using Tracks with 1^{st} and 2^{nd} Hits

$\mathrm{d}E/\mathrm{d}x$ Calibration

Wolfgang Mader

$\mathrm{d}E/\mathrm{d}x$ Residues

- Events Used:
 - **9** 3-prong au-Decay from DATA only

Wolfgang Mader

- **9** Momentum Range $p > 3 \,\mathrm{GeV}$
- **9** At least $20 \, \mathrm{d}E/\mathrm{d}x$ Hits

- New Calibration:
 - **Good Agreement between DATA and Prediction**
 - ${}$ Bias (d $E/{
 m d}x$)meas/(d $E/{
 m d}x$)exp pprox 1%

Introduction

- Experimental Aspects
- Selection of the Signal Channels
- Results
- Conclusion

2-Meson Final States
3-Meson Final States
4-Meson Final States

Two-Meson Selection

- ${\rm K}^-\pi^0 \nu_{\tau}$ Selection
 - **9** Exactly 1 π^0 Candidate
 - Exactly 1 Track

 - $3 \, \mathrm{GeV} < \mathrm{p} < 35 \, \mathrm{GeV}$
 - π -Weight $W_{\pi} < 0.98$
 - ho K-Weight $W_{
 m K} < 0.8$

- $\mathrm{K}^{0}\pi^{-}\nu_{\tau}(\pi^{0})$ Selection
 - Exactly 1 K⁰_SCandidate
 - Momentum $p > 3 \,\mathrm{GeV} \dots$
 - $\ \, {\rm I\hspace{-.05cm}I} = {\rm I\hspace{-.05cm}I} dE/dx \ \, {\rm Hits}>20$
 - π -Weight $W_{\pi} > 0.98$
 - ... or $p < 3 \,\mathrm{GeV}$

Three/Four-Meson Selection

 $K^{-}\pi^{+}\pi^{-}\nu_{\tau}(\pi^{0})$ -Selection

- **9** 3prong-Vertex Fit Probability> 10^{-7}
- Exactly 1 K⁻ Candidate

 - $3 \, \mathrm{GeV} < \mathrm{p} < 35 \, \mathrm{GeV}$
 - NN-Output > 0.3
- Exactly 1 π^+ Candidate ($W_{\pi} > -0.95$)
- Sottfried-Jackson Angle $|\cos\Theta^*| < 1.2$
- Solution No/One Reconstructed π^0 ($E_{\pi^0} > 2 \, {\rm GeV}$)

Wolfgang Mader

Two-Meson Spectra

Wolfgang Mader

Tau04 09/14 - 09/17 2004

Page 14/28

Three-Meson Spektren

Wolfgang Mader

Tau04 09/14 - 09/17 2004

Page 15/28

Four-Meson Spectra

- Statistically not Significant
- Replaced with Monte Carlo Prediction

Wolfgang Mader

- Introduction
- Experimental Aspects
- Selection of the Signal Channels
- Results
- Conclusion

Branching Fractions
 Spectral Function
 Spectral Moments
 Mass of the Strange Quark

Branching Fractions

Number of Expected Events

$$N_i = N_i^{\not{\tau}} + (1 - f_{\text{bkg}}^{\not{\tau}}) \cdot N^{\tau} \sum_j \varepsilon_{ij} B_j F_j^{\text{Bias}}$$

Simultaneous
$$\chi^2$$
-Fit:

$$\chi^{2} = \sum_{\mathrm{K}^{-}\pi^{+}\pi^{-}\nu_{\tau}}^{\mathrm{K}^{-}\pi^{0}\nu_{\tau}} \left(\frac{N_{\mathrm{meas}} - N_{\mathrm{exp}}}{\sigma}\right)^{2} + \sum_{j \in \mathrm{other}} \left(\frac{B_{j} - B_{j, \mathrm{PDG}}}{\sigma_{j}}\right)^{2}$$

Other Channels Consistent with PDG

Branching Fraction $K^-\pi^0\nu_{\tau}$

- First OPAL Measurement
- Good Agreement with PDG Average
- Use new Average for Spectral Function/Moments

 $B_{\rm av}(\tau^- \to {\rm K}^- \pi^0 \nu_\tau) = (0.453 \pm 0.030)\%$

BaBar 2004: $B(\tau^- \to K^- \pi^0 \nu_{\tau}) = 0.438 \pm 0.004_{stat} \pm 0.022_{sys}$ (see Fabrizio's Talk)

Branching Fraction $K^-\pi^+\pi^-\nu_{\tau}$

- Result Consistent with
 - Previous OPAL Measurement
 - CLEO Measurement
- **PDG** Average Dominated by ALEPH-Measurement (Discrepancy $\sim 3\sigma$)
- Use new Average for Spectral Function/Moments

$$B_{\rm av}(\tau^- \to {\rm K}^- \pi^+ \pi^- \nu_\tau) = (0.330 \pm 0.028)\%$$

The Strangeness Spectral Function

$$\begin{split} v_J^{\rm S}(s)/a_J^{\rm S}(s) &= \frac{m_\tau^2}{6|V_{\rm us}|^2 S_{\rm ew}} \left(1 - \frac{s}{m_\tau^2}\right)^{-2} \left(1 + \frac{2s}{m_\tau^2}\right)^{-J} \\ &\times \frac{B(\tau \to ({\rm V/A})^{(S=-1)}\nu_\tau)}{B(\tau \to e^- \bar{\nu}_e \nu_\tau)} \frac{1}{N_{\rm V/A}} \frac{{\rm d}N_{\rm V/A}}{{\rm d}s} \end{split}$$

Wolfgang Mader

Systematic Uncertainties

- **9** PDG Branching Fractions $\Delta_{\rm B}$
- K- π Separation $\Delta_{dE/dx}$
- Identification of neutral Kaons $\Delta_{K^0_S}$
- Energy/Momentum Scale Δ_E/Δ_p
- Mass Correction Procedure Δ_{mcorr}

$(\mathbf{s}-\mathrm{range})/\mathrm{GeV}^{2}$	Δ_{B}	$\Delta_{\mathrm{d}E/\mathrm{d}x}$	$\Delta_{\mathrm{K}_{\mathrm{S}}^{0}}$	Δ_{E}	$\Delta_{ m p}$	$\Delta_{ m mcorr}$	$\Delta_{ m sys}^{ m tot}$	Δ_{stat}	$\mathbf{V}\mathbf{+}\mathbf{A}$
$egin{array}{l} (0.18, 0.34) \ (0.53, 0.77) \ (0.77, 1.06) \ (1.06, 1.39) \ (1.39, 1.77) \ (1.77, 2.19) \ (2.19, 2.66) \end{array}$	0.10 0.04 0.13 0.08 0.18 0.32 0.35	$\begin{array}{c}\\ 0.006\\ 0.011\\ 0.003\\ 0.005\\ 0.006\\ 0.007\end{array}$	$\begin{array}{c}\\ 0.006\\ 0.011\\ 0.003\\ 0.005\\ 0.007\\ 0.009 \end{array}$	$\begin{array}{c}\\ 0.007\\ 0.014\\ 0.004\\ 0.005\\ 0.007\\ 0.009 \end{array}$	$\begin{array}{c}\\ 0.003\\ 0.001\\ 0.001\\ 0.002\\ 0.003\\ 0.003\end{array}$	 0.06 0.11 0.03 0.05 0.06 0.07	$\begin{array}{c} 0.10\\ 0.07\\ 0.17\\ 0.09\\ 0.18\\ 0.33\\ 0.36\end{array}$	$\begin{array}{c}\\ 0.17\\ 0.18\\ 0.07\\ 0.19\\ 0.25\\ 0.49 \end{array}$	$\begin{array}{r} 3.22{\pm}0.10\\ 1.17{\pm}0.18\\ 2.27{\pm}0.25\\ 0.69{\pm}0.11\\ 0.90{\pm}0.26\\ 1.22{\pm}0.41\\ 1.44{\pm}0.61\end{array}$
$({f 2.66},{f 3.17})$	0.30	0.007	0.008	0.008	0.003	0.07	0.31	0.85	$1.35{\pm}0.90$

The Spectral Moments

$$R_{\tau,\,\mathrm{S}}^{kl} = \int_0^{m_\tau^2} \mathrm{d}s \left(1 - \frac{s}{m_\tau^2}\right)^{\mathbf{k}} \left(\frac{s}{m_\tau^2}\right)^{\mathbf{l}} \sum_{\tau^- \to \nu_\tau X_\mathrm{s}^-} \frac{B(\tau \to (\mathrm{V/A})^{(S=-1,J=0/1)}\nu_\tau)}{B(\tau^- \to e^- \bar{\nu}_e \nu_\tau)} \frac{\mathrm{d}N_{\mathrm{V/A}}}{\mathrm{d}s} \frac{1}{N_{\mathrm{V/A}}}$$

- B: Branching Fractions
- ${}_{lacksymbol{ imes}} ~~\mathrm{d}N_{\mathrm{V/A}}/\mathrm{d}s$: Invariant Mass Spectrum
- $\left(1-\frac{s}{m_{ au}^2}\right)^k \left(\frac{s}{m_{ au}^2}\right)^l$: Weighting Function

The Spectral Moments

$$R_{\tau,\,\mathrm{S}}^{kl} = \int_{0}^{m_{\tau}^{2}} \mathrm{d}s \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{k} \left(\frac{s}{m_{\tau}^{2}}\right)^{l} \sum_{\tau^{-} \to \nu_{\tau} X_{\mathrm{s}}^{-}} \frac{B(\tau \to (\mathrm{V/A})^{(S=-1,J=0/1)}\nu_{\tau})}{B(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})} \frac{\mathrm{d}N_{\mathrm{V/A}}}{\mathrm{d}s} \frac{1}{N_{\mathrm{V/A}}}$$

- B: Branching Fractions
- ${}_{lacksymbol{ imes}} ~~\mathrm{d}N_{\mathrm{V/A}}/\mathrm{d}s$: Invariant Mass Spectrum
- $\left(1-\frac{s}{m_{ au}^2}\right)^k \left(\frac{s}{m_{ au}^2}\right)^l$: Weighting Function

kl	$R^{kl}_{ au,\mathrm{S}}$	Δ_{stat}	$\Delta_{\mathrm{d}E/\mathrm{d}x}$	$\Delta_{\mathrm{K_S^0}}$	Δ_{E}	Δ_{p}	$\Delta_{ m mcorr}$
00	0.1677 ± 0.0050	0.0050					

Wolfgang Mader

The Spectral Moments

$$R_{\tau,\,\mathrm{S}}^{kl} = \int_0^{m_\tau^2} \mathrm{d}s \left(1 - \frac{s}{m_\tau^2}\right)^{\mathbf{k}} \left(\frac{s}{m_\tau^2}\right)^{\mathbf{l}} \sum_{\tau^- \to \nu_\tau X_\mathrm{s}^-} \frac{B(\tau \to (\mathrm{V/A})^{(S=-1,J=0/1)}\nu_\tau)}{B(\tau^- \to e^- \bar{\nu}_e \nu_\tau)} \frac{\mathrm{d}N_{\mathrm{V/A}}}{\mathrm{d}s} \frac{1}{N_{\mathrm{V/A}}}$$

- B: Branching Fractions
- ${}_{lacksymbol{ imes}} ~~\mathrm{d}N_{\mathrm{V/A}}/\mathrm{d}s$: Invariant Mass Spectrum
- $\left(1-\frac{s}{m_{ au}^2}\right)^k \left(\frac{s}{m_{ au}^2}\right)^l$: Weighting Function

kl	$R^{kl}_{ au,\mathrm{S}}$	$\Delta_{ m stat}$	$\Delta_{\mathrm{d}E/\mathrm{d}x}$	$\Delta_{\mathrm{K}_{\mathrm{S}}^{0}}$	Δ_{E}	Δ_{p}	$\Delta_{ m mcorr}$
00	0.1677 ± 0.0050	0.0050					
$10 \\ 11 \\ 12 \\ 13$	$\begin{array}{c} 0.1161 \pm 0.0038 \\ 0.0298 \pm 0.0012 \\ 0.0107 \pm 0.0006 \\ 0.0048 \pm 0.0004 \end{array}$	$\begin{array}{c} 0.0035\\ 0.0011\\ 0.0005\\ 0.0002\end{array}$	$\begin{array}{c} 0.0006 \\ 0.0001 \\ 0.0002 \\ 0.0002 \end{array}$	$\begin{array}{c} 0.0006 \\ 0.0001 \\ 0.0002 \\ 0.0002 \end{array}$	$\begin{array}{c} 0.0005 \\ 0.0001 \\ 0.0002 \\ 0.0002 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0011 \\ 0.0004 \\ 0.0002 \\ 0.0001 \end{array}$
$\begin{array}{c} 20\\21 \end{array}$	$\begin{array}{c} 0.0862 \pm 0.0028 \\ 0.0191 \pm 0.0007 \end{array}$	$0.0025 \\ 0.0006$	$\begin{array}{c} 0.0006 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0006\\ 0.0001 \end{array}$	$\begin{array}{c} 0.0006 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0002\\ 0.0001 \end{array}$	$\begin{array}{c} 0.0008\\ 0.0002 \end{array}$
30	$\boldsymbol{0.0671 \pm 0.0022}$	0.0020	0.0005	0.0005	0.0004	0.0002	0.0006
40	0.0539 ± 0.0018	0.0016	0.0003	0.0003	0.0003	0.0001	0.0005

Wolfgang Mader

SU(3)_{Flavor} Symmetry Breaking

CKM Weighted Difference of strange and non-strange Moments

$$\delta R_{\tau}^{kl} = \frac{R_{\tau,\text{non-S}}^{kl}}{|V_{\text{ud}}|^2} - \frac{R_{\tau,\text{S}}^{kl}}{|V_{\text{us}}|^2}$$

- $R_{\tau, \text{ non-S}}^{kl}$ updated from Eur.Phys.J.C7:571-593,1999
- CKM Inputs $|V_{\rm us}| = 0.2196 \pm 0.0023$

 $|V_{\rm ud}| = 0.9734 \pm 0.0008$

	C	PAL		AL	EPH	
kl	$\delta R_{ au, m S}$	Δ_{\exp}	$\Delta_{ V_{\mathrm{us}} }$	$\delta R_{ au, m S}$	Δ_{\exp}	$\Delta_{ V_{\mathrm{us}} }$
00 10 20 30 40	0.262 ± 0.117 0.278 ± 0.088 0.304 ± 0.065 0.325 ± 0.051 0.344 ± 0.042	0.102 0.078 0.058 0.046 0.037	0.058 0.040 0.030 0.023 0.019	$\begin{array}{c} 0.374 {\pm} 0.133 \\ 0.398 {\pm} 0.077 \\ 0.399 {\pm} 0.054 \\ 0.396 {\pm} 0.042 \\ 0.395 {\pm} 0.034 \end{array}$	0.118 0.065 0.044 0.034 0.028	0.062 0.042 0.031 0.024 0.020

SU(3)_{Flavor} Symmetry Breaking

CKM Weighted Difference of strange and non-strange Moments

$$\delta R_{\tau}^{kl} = \frac{R_{\tau, \rm non-S}^{kl}}{|V_{\rm ud}|^2} - \frac{R_{\tau, \rm S}^{kl}}{|V_{\rm us}|^2}$$

- $R_{\tau, \text{ non-S}}^{kl}$ updated from Eur.Phys.J.C7:571-593,1999
- CKM Inputs $|V_{\rm us}| = 0.2196 \pm 0.0023$

 $|V_{\rm ud}| = 0.9734 \pm 0.0008$

SU(3)_{Flavor} Symmetry Breaking

$$m_{\rm s}^2(m_{\tau}^2)\Big|_{kl} \simeq \frac{m_{\tau}^2}{(1-\epsilon_{\rm d}^2)\Delta_{kl}^{(2)}(a_{\tau})} \left(\frac{\delta R_{\tau}^{kl}}{24S_{\rm ew}} + 2\pi^2 \frac{\langle \delta O_4(m_{\tau}^2) \rangle}{m_{\tau}^4} Q_{kl}(a_{\tau})\right)$$

- **9** S_{ew} : Electroweak Correction
- $\Delta_{kl}^{(2)}/Q_{kl}$: Pert. Correction dim-2/4

- $\epsilon_{\rm d}$: $m_{\rm d}/m_{\rm s} = 0.053 \pm 0.002$
- $\langle \delta O_4(m_\tau^2) \rangle = (1.5 \pm 0.4) \times 10^{-3} \,\mathrm{GeV}$ Quark-Condensate

	$m_{ m s}/{ m MeV}$	$\sigma/{ m MeV}$				Korr	elation	en/%	
kl		$\sigma_{ m theo}$	$\sigma_{ V_{ m us} }$	$\sigma_{ m exp}$	00	10	20	30	40
$ \begin{array}{c} 00 \\ 10 \\ 20 \\ 30 \\ 40 \end{array} $	$79.5 \pm 49.7 \\76.0 \pm 34.7 \\82.4 \pm 29.5 \\91.1 \pm 32.3 \\85.6 \pm 30.9$	$10.0 \\ 12.0 \\ 16.2 \\ 24.0 \\ 25.2$	$27.3 \\ 16.7 \\ 12.4 \\ 10.7 \\ 8.3$	$39.4 \\ 26.7 \\ 19.7 \\ 17.1 \\ 13.5$	100	59 100	$46 \\ 53 \\ 100$	31 38 37 100	22 29 29 24 100

Strange Quark Mass at $\mu^2 = m_{\tau}^2$:

 $m_{\rm s}(m_{\tau}^2) = (84 \pm 14_{\rm exp} \pm 6_{V_{\rm us}} \pm 17_{\rm theo}) \,\mathrm{MeV}$ = $(84^{+20}_{-26}) \,\mathrm{MeV}$

Wolfgang Mader

$m_{\rm s}$ at $\mu^2 = 1 \,{ m GeV}^2$ and $\mu^2 = 4 \,{ m GeV}^2$

- Using Runge-Kutta Procedure
- Use 4-loop β and γ Function

$m_{\rm s}$ Comparison ($\mu^2 = 4 \,{\rm GeV}^2$)

Wolfgang Mader

Tau04 09/14 - 09/17 2004

Page 27/28

Summary

- Experimental Aspects
- Selection of the Signal Channels
- Sesults
 - Branching Fractions

 $B(\tau^- \to K^- \pi^0 \nu_\tau) = (0.471 \pm 0.064_{\text{stat}} \pm 0.021_{\text{sys}})\%$

 $B(\tau^- \to K^- \pi^+ \pi^- \nu_\tau) = (0.415 \pm 0.059_{\text{stat}} \pm 0.031_{\text{sys}})\%$

- The Strangeness Spectral Function
- Spectral Moments
- Mass of the Strange Quark

 $m_{\rm s}(1\,{\rm GeV}^2) = (111^{+26}_{-35})\,{\rm MeV}$ $m_{\rm s}(m_{\tau}^2) = (84^{+20}_{-26})\,{\rm MeV}$ $m_{\rm s}(4\,{\rm GeV}^2) = (82^{+19}_{-25})\,{\rm MeV}$

Thanks to Norbert Wermes and Achim Stahl