Perturbative QCD and tau-decays

K. Chetyrkin (with P. A. Baikov and J. H. Kühn)

- $\langle jj^{\dagger} \rangle$ correlator and au decays
- \bullet structure of the correlator: massless versus $\mathcal{O}(m_q^2)$ contributions
- calculations: status of the art
- $O(\alpha_s^4 N_f^2)$ term in $R_{\tau} \Rightarrow FAC/PMS \Rightarrow contour-improvement$
- <u>full</u> $O(\alpha_s^3 m_q^2/s)$ contribution to the correlator and R_{τ} : results and comparison to the earlier predictions from PMS and FAC and phenomenological applications

summary

au decays probe the correlator of the charged weak currents in an interesting region of energies just above 1 GeV

\downarrow

strong dependence on α_s and (for Cabibbo-suppressed part) on m_s

 \downarrow

good for finding $lpha_s$ and m_s

₽

 α_s is not very small \Rightarrow higher order QCD terms are important \Rightarrow they should be computed and understood

$$R_{ au} = R_{ au,NS} + R_{ au,S} \Longleftrightarrow \langle j j^{\dagger}
angle \quad ext{correlator}$$

$$R_{\tau} \sim 6i\pi \int_{|s|=M_{\tau}^2} \frac{ds}{M_{\tau}^2} \left(1 - \frac{s}{M_{\tau}^2}\right)^2 \left[\Pi^{(q)}(s) - \frac{2}{M_{\tau}^2}\Pi^{[g]}(s)\right]$$
$$i \int dx \, e^{iqx} \langle T[j_{\mu}(x)(j_{\nu})^{\dagger}(0)] \rangle = g_{\mu\nu}\Pi^{(g)}(q^2) + q_{\mu}q_{\nu}\Pi^{(q)}(q^2)$$

where

consider the structure of $\mathcal{O}(m_s^2)$ term $(Q^2 \equiv -q^2, L \equiv Log \left(\frac{\mu^2}{Q^2}\right))$:

$$\Pi^{(g)} = \frac{3}{16\pi^2} \left(Q^2 \Pi^{(g)}(L, \alpha_s) + m_s^2 \Pi_2^{(g)}(L, \alpha_s) + \mathcal{O}(m_s^4) \right)$$
$$\Pi^{(q)} = \frac{3}{16\pi^2} \left(\Pi^{(g)}(L, \alpha_s) + m_s^2 \Pi_2^{(q)}(L, \alpha_s) + \mathcal{O}(m_s^4) \right)$$

constant parts of $\Pi^{(g)}$ and $\Pi^{(g)}_2$ does not contribute to $R_{\tau,s}$ while that of $\Pi^{(q)}_2$ does! \longrightarrow up to "today" $R_{\tau,S}$ has been completely known only to order a_s^2 consider $m_s = 0$:

 α_s^4 requires absorptive part of 5-loop correlator

 $\widehat{=}$ divergent part $(1/\epsilon)$ of 5-loop correlator

A finite part of 4-loop \Rightarrow div. part of 5-loop

systematic, automatized algorithm /K.Ch. (97) / to express div part of any (L+1)-loop diagram contributing to to a massless correlator in terms of properly constructed set of L-loop massless propagators

- B finite part of 3-loop massless propagators: easy \Rightarrow solved more than 20 years ago through integration by parts /K.Ch., Tkachov (81)/
- C finite part of 4-loop massless propagators difficult! ⇒ not yet completely solved compare 3- and 4-loop cases

MINCER: 3-loop /Larin, Tkachov, Vermaseren (92)/ recursion relations based on integration by parts identities! reduction algorithm and program constructed "manually" for 14 topologies.

4-loop:

much more complicated identities

 \sim 150 topologies . . .

straightforward generalization of MINCER

difficult or even impossible!

Baikov: reccurence relation can be solved "mechanically" through 1/D expansion¹

• coefficient functions in front of master integrals depend on D in simple way:

$$C^{\alpha}(D) = \frac{P^{n}(D)}{Q^{m}(D)} \underset{D \to \infty}{=} \sum_{k} C^{\alpha}_{k} \quad (1/D)^{k}$$

- The terms in the 1/D expansion expressible through simple Gaussian integrals (important: a new representation of Feynman amplitudes)
- sufficiently many terms in 1/D and $C_k^{\alpha} \longrightarrow C^{\alpha}(D)$

¹Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385; Nucl.Phys.Proc.Suppl.116:378-381,2003

Pluses and Minuses of the 1/D expansion

- + easy to automatize, simple (relatively) programming
- + (semi)-universality: the idea is applicable to any (one-scale?) problem
- + unlike *all* others approaches allows *naturally* to compute directly the sum of all separate t-integrals (within a gi ven topology) \implies huge gain in efficiency
- + requires no fancy treatment of polynomials in D (factorization, etc.)
 ⇒ a straightforward implementation with FORM3 (including its parallel version)
 - hardly be applicable for multiscale problems
 - requires **a lot** of computer resources; if CF's proves to have very complicated *D*-dependence might fail due to practical reasons (hardware resources, time, etc.)

status of R(s) at 5 loops

 n_f^2 -terms done: \Rightarrow leading and subleading n_f terms for $R_{e^+e^-}$, R_{τ} , (including m^2/s -terms):

$\mathbf{RESULTS}^1$

$$R_{ au}$$
, $m=0$

fixed order:

consider $D_0^{[g]}(Q^2) \equiv -\frac{3}{4}Q^2 \frac{\mathrm{d}}{\mathrm{d}Q^2} \Pi_0^{[g]}$

(Adler function, μ independent, $a_s = \alpha_s(Q^2)/\pi$

$$D_0^{[g]}(Q^2) = 1 + a_s + a_s^2 \left(-0.1153 n_f + 1.986\right) + a_s^3 \left(0.08621 n_f^2 - 4.216 n_f + 18.24\right) + a_s^4 \left(-0.01009 n_f^3 + 1.875 n_f^2 + d_{0,1}^{[g]4} n_f + d_{0,0}^{[g]4}\right)$$

¹Baikov, K.Ch., Kühn, PLR 88 (2002) 012001

use new input: $\alpha_s^4 n_f^2$ -term $d_0^{[g]4}(\text{FAC/PMS}, n_f = 3, 4) = \boxed{105.7 - 31.8 n_f} + 1.875 n_f^2 - 0.01009 n_f^3$ $d_0^{[g]4}(\text{FAC/PMS}, n_f = 4, 5) = \boxed{107.7 - 32.3 n_f} + 1.875 n_f^2 - 0.01009 n_f^3$ $d_0^{[g]4}(\text{FAC/PMS}, n_f = 3, 5) = \boxed{106.4 - 32.0 n_f} + 1.875 n_f^2 - 0.01009 n_f^3$

 \downarrow

 $d_0^{[g]4}|_{n_f=3} = 27 \pm 16$ in full agreement to old prediction by (Kataev, Starshenko) $d_0^{[g]5}|_{n_f=3} = 145 \pm 100$

 \Downarrow

Implication for α_s

with $\alpha_s^4 \to 0$

$$\begin{aligned}
\alpha_s^{\text{FOPT}}(M_{\tau}) &= 0.345 \pm (0.025|0.037) \\
\alpha_s^{\text{CIPT}}(M_{\tau}) &= 0.364 \pm (0.012|0.021) \\
\alpha_s^{\text{FOPT}}(M_Z) &= 0.1209 \pm (0.0024|0.0037) \\
\alpha_s^{\text{CIPT}}(M_Z) &= 0.1229 \pm (0.0011|0.0020)
\end{aligned}$$

with $lpha_s^4$ and $lpha_s^5$	Method	$lpha_s(M_ au)$	$\Delta\delta_P^{ m exp}$	$\Delta \mu$	$\Delta d_0^{[g]4}$	$\Delta d_0^{[g]5}$
	FOPT	$0.330 \pm 0.006 \pm 0.02$	0.006	0.019	0.0045	0.0011
	CIPT	$0.354 \pm 0.009 \pm 0.006$	0.009	0.0036	0.0042	0.0019

Lesson: with any(?) "reasonable" choice of the α_s^5 term uncertainty is reduced; difference between FOPT and CIPT remains!

[this difference is reduced for a fictitious heavy lepton of 3 GeV]

m_s from au-decays

More convenient representation¹ for $R_{\tau,S}$ $(L+T \equiv (q))$

$$R_{\tau} \sim 6i\pi \int_{|s|=M_{\tau}^2} \frac{ds}{M_{\tau}^2} \left(1 - \frac{s}{M_{\tau}^2}\right) \left[\left(1 + 2\frac{s}{M_{\tau}^2}\right)^2 \Pi^{(L+T)}(s) - \frac{2s}{M_{\tau}^2} \Pi^{(0)}(s) \right]$$

Facts:

$$q^2 \Pi^{(0)} \equiv \Pi^g + q^2 \Pi^q$$

- $\Pi^{(0)}=0$ in the massless limit; due to a Ward identity it is related to scalar and pseudoscalar correlators
- \Rightarrow and could be constrained from low resonance contributions without a use of pQCD

the PT series for L-piece is "wilder" than the one for L+T piece

(at least for known terms)

 \Rightarrow one could try find m_s (and or $|V_{us}|$) from L + T contribution only /Maltman, Kambor and Gámiz, Jamin, Pich, Prades, Schwab, .../

¹Pich, Prades (98)

RESULTS FOR $\Pi_2^{(q)}$ /2002 and 2004/

$$\begin{split} \Pi_{2}^{(q)} &= -4m_{s}^{2}\left(1 + \frac{7}{3}a_{s} + a_{s}^{2}\left\{\left[-\frac{25}{24} - \frac{2}{9}\zeta_{3}\right]n_{f} + \frac{15331}{432} + \frac{359}{54}\zeta_{3} - \frac{520}{27}\zeta_{5}\right\} \\ &+ a_{s}^{3}\left\{\left[\frac{2131}{11664} + \frac{19}{81}\zeta_{3}\right]n_{f}^{2} + \left[-\frac{68135}{1944} - \frac{52}{27}\zeta_{3}^{2} - \frac{3997}{486}\zeta_{3} - \frac{5}{6}\zeta_{4} + \frac{3875}{243}\zeta_{5}\right]n_{f} \\ &+ \frac{2629301}{5184} + \frac{29333}{648}\zeta_{3} + \frac{653}{18}\zeta_{3}^{2} - \frac{138695}{324}\zeta_{5} + \frac{79835}{648}\zeta_{7}\right\} \\ &= -4m_{s}^{2}\left(1 + 2.333a_{s} + a_{s}^{2}\left\{-1.309n_{f} + 23.51\right\} \right. \\ &+ a_{s}^{3}\left\{0.4647n_{f}^{2} - 32.08n_{f} + \left(k_{2,0}^{(q)3} = 294.38\right)\right\}\right) \\ &= -4m_{s}^{2}\left(1 + 2.3333a_{s} + 19.583a_{s}^{2} + 202.309a_{s}^{3}\right) \end{split}$$

the very calculation took (very roughly!) about 2 PC-years!

Comparison to PMS/FAC/NNA predictions¹

$$k^{(q),3}(\text{EXACT}) = -202.309$$

 $k^{(q),3}(predicted) = 200(\text{PMS}) \quad 199(\text{FAC}) \quad 127(\text{NNA})$

The astonishingly good agreement gives us a strong argument to repeat the game and predict, starting from now completely known $k_2^{(q)3}$ the corresponding result for one loop more, that is for $k_2^{(q)4}$. To be definite, we cite the PMS predictions (FAC results are very similar)

$$k_2^{(q)4} = 2200 \pm 200^2$$

¹P.A.Baikov, K.Ch., J. H. Kühn, PLB 559:245-251,2003

² fine print: It is, of course, difficult to assign a qualitative estimate of possible uncertainty in the above predictions; however, a simple comparison to α_s^3 case strongly suggests that an error of about 10% should be considered as a conservative one

/K.Ch.,Kühn, Pivovarov (98)/ /Pich, Prades (98)/

 $\Pi^{L+T} = \Pi_0^{L+T} + \frac{m_s^2}{Q^2} \Pi_2^{L+T} \Leftarrow \text{ no subtraction constants for } \Pi_2^q \text{ is necessary!}$

problem: RG-improvement does not commute to $\frac{d}{ds}$!

$$\Pi : \frac{1}{s} \left[\alpha_s(\mu) + \beta_0 \ Log \frac{s}{\mu^2} \ \alpha_s^{-2}(\mu) \right] \xrightarrow{\text{RG-imp}} \alpha_s(s)/s$$
$$D : \frac{1}{s} \left[\alpha_s(\mu) + \beta_0 \ Log \frac{s}{\mu^2} \ \alpha_s^{-2}(\mu) \right] \xrightarrow{\text{sd}_{ds} + \text{RG-imp}} - \alpha_s(s)/s - \beta_0 \alpha_s^{-2}(s)/s$$

conclusion: $s\frac{d}{ds}$ moves part of lower order input to higher orders \Rightarrow contrary to the spirit of CIPT!

this is confirmed by inspecting the convergence pattern:

$$\begin{aligned} \Delta^{L+T}(\alpha_s &= .15, D_2^{L+T}) &= 0.952 + 0.182 \ h + 0.0664 \ h^2 + 0.0278 \ h^3 + 0.0249 \ h^4 \\ &= 0.952, \ 1.134, \ 1.2004, \ 1.2282, \ 1.253 \\ \Delta^{L+T}(\alpha_s &= .15, \text{direct}) &= 1.05 + 0.118 \ h + 0.0453 \ h^2 + 0.0201 \ h^3 + 0.0174 \ h^4 \\ &= 1.05, \ 1.168, \ 1.2133, \ 1.2334, \ 1.251 \end{aligned}$$

$$\begin{split} \Delta_{30}^{L+T}(\alpha_s &= .334, D_2^{L+T}) &= 1.19 + 0.571 \ h + 0.48 \ h^2 + 0.416 \ h^3 + 0.625 \ h^4 \\ &= 1.19, \ 1.761, \ 2.241, \ 2.657, \ 3.282 \\ \Delta_{30}^{L+T}(\alpha_s &= .334, \text{direct}) &= 1.59 + 0.471 \ h + 0.413 \ h^2 + 0.339 \ h^3 + 0.269 \ h^4 \\ &= 1.59, \ 2.061, \ 2.474, \ 2.813, \ 3.082 \end{split}$$

where 4-loop terms come from PMS estimations for Π_2^{L+T}

BUT! LIFE IS NOT SO SIMPLE!!!

 $\Delta_{20}^{L+T}(\alpha_s = .334, D_2^{L+T}) = 1.05 + 0.451 \ h + 0.327 \ h^2 + 0.223 \ h^3 + 0.152 \ h^4$ $= 1.05, \ 1.501, \ 1.828, \ 2.05, \ 2.203$

$$\Delta_{20}^{L+T}(\alpha_s = .334, \text{direct}) = 1.35 + 0.347 \ h + 0.247 \ h^2 + 0.12 \ h^3 - 0.223 \ h^4$$
$$= 1.35, \ 1.697, \ 1.944, \ 2.064, \ 1.841$$

one observes rather siginificant contribution from $\mathcal{O}(\alpha_s^4)$ term: it looks like both (or one of) 2 PT series begin to behave itlsef wildly at this order! (/Kambor, Maltman (2000)/

Parameter	(2,0)	(3,0)	(4,0)	w. aver
Total	$+33.6 \\ -44.3$	$^{+25.0}_{-29.5}$	$+21.3 \\ -23.0$	
$m_s(\mathcal{O}(a_s^3), \text{exact})$	92.5	85.3	78.1	82.5 ± 17
$\mathcal{O}(a_s^3)$	-4.6 + 5.5	-6.0 +7.6	-6.7 + 8.0	
others	$+34 \\ -44$	$^{+25}_{-29}$	$^{+20}_{-22}$	
Total	$+33.6 \\ -44.3$	$^{+25.0}_{-29.5}$	$^{+21.6}_{-23.0}$	
$m_s(\mathcal{O}(a_s^4),PMS)$	89.3	76.8	66.5	73.2 ± 17
$\mathcal{O}(a_s^4)$	-3.0 + 3.2	-6.4 + 8.6	-7.6 +11.6	
others	$+34 \\ -44$	$+25 \\ -30$	$+20 \\ -22$	
Total	$+33.4 \\ -44.3$	$+25.6 \\ -29.8$	$+23.0 \\ -23.4$	

Table 1: An update of the Table 1 of [1] /Gámiz,Jamin,Pic,Prades,Schwab (2004)/ for m_s extracted from recent exp.data of the OPAL collaboration /G.Abbiendi et al, (2004)/ with subtracted longitudinal contribution accoding to [1]. The contour improvement has been done with the Adler function D_2^{L+T} . "others" \Rightarrow all uncertainties (added in quadrature) of the input parameters different from the $\mathcal{O}(a_s^3)$ (or $\mathcal{O}(a_s^4)$) terms in the perturbative contribution. The last colomun shows a weighted average over the different moments (as the individual error for a given moment we have chosen the larger one)

Parameter	(2,0)	(3,0)	(4,0)	w. aver
$m_s(\mathcal{O}(a_s^3),exact)$	92.4	83.0	74.2	79.6 ± 17
$\mathcal{O}(a_s^3)$	-2.6 + 2.8	$-4.6 \\ +5.5$	$-5.6 \\ +7.3$	
others	$+34 \\ -44$	$+24 \\ -29$	$+20 \\ -22$	
Total	$+33.6 \\ -44.3$	$+25.0 \\ -29.5$	$+21.3 \\ -23.0$	
$m_s(\mathcal{O}(a_s^4),PMS)$	97.9	79.3	65.7	74.7 ± 17
$\mathcal{O}(a_s^4)$	-5.5 + 6.5	$-3.3 \\ +3.7$	$-6 \\ +8.4$	
others	$+34 \\ -44$	$+24 \\ -29$	$+20 \\ -22$	
Total	$+41 \\ -45$	$+24.0 \\ -29$	$+22 \\ -23$	

Table 2: The same as Table I but with the contour improvement done directly for Π_2^{L+T}

 \Rightarrow at $\mathcal{O}(a_s^4)$ weighted averages of both tables are close and lead to

$$m_s(M_{ au})_{ extsf{5-loops}} = 74 \ \pm 23 \ extsf{MeV}$$

which should be compared to

 $m_s(M_{ au})_{4m loops} = 84 \pm 23 \text{ MeV}$ according to /Gámiz, et al (2004)/

Summary: α_s

- α_s^4 -terms for $R_{e^+e^-}$ and R_{τ} are important for improved determination of α_s
- subleading n_f terms are available
- reasonable agreement with previous estimates

 \Rightarrow improved value for α_s

- complete calculation of α_s^4 -terms for R_{τ} and $R_{e^+e^-}$ in the massless limit is possible and is currently under way
- difference between CIPT and FOPT results seems to persist in higher orders

Summary: m_s

- \bullet analytical QCD result for at $m_s^2 \alpha_s{}^3$ order contribution to R_τ is available
- comparison of the exact result to predictions from various "optimization schemes" demonstrate striking success (relative accuracy around 1(!) percent) of PMS and FAC
- the success strongly suggests to consider and to use the PMS prediction for $m_s^2 \alpha_s^4$ as quite reliable one
- pure convergence of the PT series for $m_s \Rightarrow$ requires new ideas (clever than L + T choice of the integration weight? /Kambor, Maltman (2000)/)
- accurate measurements of lower moments of $R_{\tau,S}$ are important to decrease unphysical dependence of m_s from the moment
- no way to compute $m_s^2 lpha_s^4$ -term in any foreseeable future