
Perturbative QCD and tau-decays

K. Chetyrkin (with P. A. Baikov and J. H. Kühn)

• 〈jj†〉 correlator and τ decays

• structure of the correlator: massless versus O(m2
q)

contributions

• calculations: status of the art

• O(α4
sN

2
f ) term in Rτ ⇒ FAC/PMS ⇒ contour-improvement

• full O(αs
3m2

q/s) contribution to the correlator and Rτ :
results and comparison to the earlier predictions from PMS
and FAC and phenomenological applications

• summary
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τ decays probe the correlator of the charged weak currents
in an interesting region of energies just above 1 GeV

⇓

strong dependence on αs and (for Cabibbo-suppressed part)
on ms

⇓

good for finding αs and ms

⇓

αs is not very small ⇒ higher order QCD terms are important
⇒ they should be computed and understood



Rτ = Rτ,NS + Rτ,S ⇐⇒ 〈jj†〉 correlator

Rτ ∼ 6iπ

∫
|s|=M2

τ

ds

M2
τ

(
1− s

M2
τ

)2 [
Π(q)(s)− 2

M2
τ

Π[g](s)
]

where

i

∫
dx eiqx〈T [ jµ(x)(jν)†(0) ]〉 = gµνΠ(g)(q2) + qµqνΠ(q)(q2)

consider the structure of O(m2
s) term (Q2 ≡ −q2, L ≡ Log

(
µ2

Q2

)
):

Π(g) = 3
16π2 (Q2Π(g)(L,αs) + m2

s Π(g)
2 (L,αs) +O(m4

s)

Π(q) = 3
16π2 (Π(g)(L,αs) + m2

s Π(q)
2 (L,αs) +O(m4

s)

constant parts of Π(g) and Π(g)
2 does not contribute to Rτ,s while that of Π(q)

2

does! −→ up to ”today” Rτ,S has been completely known only to order a2
s



consider ms = 0:

α4
s requires absorptive part of 5-loop correlator

=̂ divergent part (1/ε) of 5-loop correlator

A finite part of 4-loop ⇒ div. part of 5-loop

systematic, automatized algorithm /K.Ch. (97) / to express div part of any
(L+1)-loop diagram contributing to to a massless correlator in terms of properly
constructed set of L-loop massless propagators

B finite part of 3-loop massless propagators: easy ⇒ solved more than 20 years
ago through integration by parts /K.Ch., Tkachov (81)/

C finite part of 4-loop massless propagators difficult! ⇒ not yet completely solved

compare 3- and 4-loop cases



MINCER: 3-loop /Larin, Tkachov, Vermaseren (92)/

recursion relations based on integration by parts identities!

reduction algorithm and program constructed “manually” for
14 topologies.

4-loop:

much more complicated identities

∼ 150 topologies . . .

straightforward generalization of MINCER

difficult or even impossible!



Baikov: reccurence relation can be solved ”mechanically”
through 1/D expansion1

• coefficient functions in front of master integrals depend
on D in simple way:

Cα(D) =
Pn(D)
Qm(D)

===
D→∞

∑
k

Cα
k (1/D)k

• The terms in the 1/D expansion expressible through simple
Gaussian integrals (important: a new representation of
Feynman amplitudes)

• sufficiently many terms in 1/D and Cα
k −→ Cα(D)

1Baikov, Phys. Lett. B385 (1996) 403; B474 (2000) 385;
Nucl.Phys.Proc.Suppl.116:378-381,2003



Pluses and Minuses of the 1/D expansion

+ easy to automatize, simple (relatively) programming

+ (semi)-universality: the idea is applicable to any (one-scale?) problem

+ unlike all others approaches allows naturally to compute directly the
sum of all separate t-integrals (within a gi ven topology) =⇒huge gain
in efficiency

+ requires no fancy treatment of polynomials in D (factorization, etc.)
=⇒ a straightforward implementation with FORM3 (including its parallel
version)

- hardly be applicable for multiscale problems

- requires a lot of computer resources; if CF’s proves to have very
complicated D-dependence might fail due to practical reasons (hardware
resources, time, etc.)
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RESULTS1

Rτ , m = 0

fixed order:

consider D
[g]
0 (Q2) ≡ −3

4Q
2 d
dQ2Π

[g]
0

(Adler function, µ independent, as = αs(Q2)/π

D
[g]
0 (Q2) = 1 + as + a2

s (−0.1153 nf + 1.986)
+ a3

s

(
0.08621 n2

f−4.216 nf + 18.24
)

+ a4
s

(
−0.01009 n3

f + 1.875 n2
f + d

[g]4
0,1 nf + d

[g]4
0,0

)

1Baikov, K.Ch., Kühn, PLR 88 (2002) 012001



use new input: α4
sn

2
f-term

d
[g]4
0 (FAC/PMS, nf = 3, 4) = 105.7− 31.8 nf + 1.875 n2

f−0.01009 n3
f

d
[g]4
0 (FAC/PMS, nf = 4, 5) = 107.7− 32.3 nf + 1.875 n2

f−0.01009 n3
f

d
[g]4
0 (FAC/PMS, nf = 3, 5) = 106.4− 32.0 nf + 1.875 n2

f−0.01009 n3
f

⇓ ⇓

d
[g]4
0 |nf=3 = 27± 16 in full agreement to old prediction by (Kataev, Starshenko)

d
[g]5
0 |nf=3 = 145± 100



Implication for αs

with α4
s → 0

αFOPT
s (Mτ) = 0.345± (0.025|0.037)

αCIPT
s (Mτ) = 0.364± (0.012|0.021)

αFOPT
s (MZ) = 0.1209± (0.0024|0.0037)

αCIPT
s (MZ) = 0.1229± (0.0011|0.0020)

with α4
s and α5

s

Method αs(Mτ) ∆ δexp
P ∆ µ ∆ d

[g]4
0 ∆ d

[g]5
0

FOPT 0.330± 0.006± 0.02 0.006 0.019 0.0045 0.0011

CIPT 0.354± 0.009± 0.006 0.009 0.0036 0.0042 0.0019

Lesson: with any(?) ”reasonable” choice of the αs
5 term uncertainty is reduced;

difference between FOPT and CIPT remains!

[this difference is reduced for a fictitious heavy lepton of 3 GeV]



ms from τ -decays

More convenient representation1 for Rτ,S (L + T ≡ (q))

Rτ ∼ 6iπ

∫
|s|=M2

τ

ds

M2
τ

(
1− s

M2
τ

) [(
1 + 2

s

M2
τ

)2

Π(L+T )(s)− 2s

M2
τ

Π(0)(s)

]

q2Π(0) ≡ Πg + q2ΠqFacts:

Π(0) = 0 in the massless limit; due to a Ward identity it is related to scalar and
pseudoscalar correlators

⇒ and could be constrained from low resonance contributions without a use of
pQCD

the PT series for L-piece is ”wilder” than the one for L + T piece
(at least for known terms)

⇒ one could try find ms (and or |Vus|) from L + T contribution only /Maltman,

Kambor and Gámiz,Jamin, Pich, Prades, Schwab, . . . /

1Pich, Prades (98)



RESULTS FOR Π(q)
2 /2002 and 2004/

Π(q)
2 = −4m2

s

(
1 +

7
3

as + a2
s

{[
−25

24
− 2

9
ζ3

]
nf +

15331
432

+
359
54

ζ3 −
520
27

ζ5

}
+a3

s

{[
2131
11664

+
19
81

ζ3

]
n2

f +
[
−68135

1944
− 52

27
ζ2
3 −

3997
486

ζ3 −
5
6

ζ4 +
3875
243

ζ5

]
nf

+
2629301

5184
+

29333
648

ζ3 +
653
18

ζ2
3 −

138695
324

ζ5 +
79835
648

ζ7

}

= −4m2
s

(
1 + 2.333 as + a2

s {−1.309 nf + 23.51}

+a3
s

{
0.4647 n2

f − 32.08 nf + (k(q)3
2,0 = 294.38)

} )
= −4m2

s (1. + 2.33333 as + 19.583 a2
s + 202.309 a3

s)

the very calculation took (very roughly!) about 2 PC-years!



Comparison to PMS/FAC/NNA predictions1

k(q),3(EXACT) = −202.309

k(q),3(predicted) = 200(PMS) 199(FAC) 127(NNA)

The astonishingly good agreement gives us a strong argument to repeat the game

and predict, starting from now completely known k
(q)3
2 the corresponding result for

one loop more, that is for k
(q)4
2 . To be definite, we cite the PMS predictions (FAC

results are very similar)

k
(q)4
2 = 2200± 2002

2 fine print: It is, of course, difficult to assign a qualitative estimate of possible uncertainty in

the above predictions; however, a simple comparison to α3
s case strongly suggests that an error of

about 10% should be considered as a conservative one

1P.A.Baikov, K.Ch., J. H. Kühn, PLB 559:245-251,2003



subtlety: to use DL+T
2 or ΠL+T

2 ?

∆L+T =
∮

dsP (s)ΠL+T
2 (s)/s ≡

∮
dsP̄ (s)(DL+T

2 (s) ≡ Q2 d

ds
ΠL+T

2 /s)

⇓ ⇓

/K.Ch.,Kühn, Pivovarov (98)/ /Pich, Prades (98)/

ΠL+T = ΠL+T
0 + m2

s
Q2 ΠL+T

2 ⇐ no subtraction constants for Πq
2 is necessary!

problem: RG-improvement does not commute to d
ds !

Π :
1
s

[
αs(µ) + β0 Log

s

µ2
αs

2(µ)
]

RG−imp
−−−−→ αs(s)/s

D :
1

s

[
αs(µ) + β0 Log

s

µ2
αs

2(µ)
] s d

ds+RG−imp
−−−−→ −αs(s)/s − β0αs

2(s)/s

conclusion: s d
ds moves part of lower order input

to higher orders ⇒ contrary to the spirit of

CIPT!



this is confirmed by inspecting the convergence pattern:

∆L+T (αs = .15, DL+T
2 ) = 0.952 + 0.182 h + 0.0664 h2 + 0.0278 h3 + 0.0249 h4

= 0.952, 1.134, 1.2004, 1.2282, 1.253

∆L+T (αs = .15, direct) = 1.05 + 0.118 h + 0.0453 h2 + 0.0201 h3 + 0.0174 h4

= 1.05, 1.168, 1.2133, 1.2334, 1.251

∆L+T
30 (αs = .334, DL+T

2 ) = 1.19 + 0.571 h + 0.48 h2 + 0.416 h3 + 0.625 h4

= 1.19, 1.761, 2.241, 2.657, 3.282

∆L+T
30 (αs = .334, direct) = 1.59 + 0.471 h + 0.413 h2 + 0.339 h3 + 0.269 h4

= 1.59, 2.061, 2.474, 2.813, 3.082

where 4-loop terms come from PMS estimations for ΠL+T
2



BUT! LIFE IS NOT SO SIMPLE!!!

∆L+T
20 (αs = .334, DL+T

2 ) = 1.05 + 0.451 h + 0.327 h2 + 0.223 h3 + 0.152 h4

= 1.05, 1.501, 1.828, 2.05, 2.203

∆L+T
20 (αs = .334, direct) = 1.35 + 0.347 h + 0.247 h2 + 0.12 h3 − 0.223 h4

= 1.35, 1.697, 1.944, 2.064, 1.841

one observes rather siginificant contribution from O(αs
4)

term: it looks like both (or one of) 2 PT series begin to
behave itlsef wildly at this order! (/Kambor, Maltman (2000)/



Parameter (2,0) (3,0) (4,0) w. aver

Total +33.6
−44.3

+25.0
−29.5

+21.3
−23.0

ms(O(a3
s), exact) 92.5 85.3 78.1 82.5 ± 17

O(a3
s)

−4.6
+5.5

−6.0
+7.6

−6.7
+8.0

others +34
−44

+25
−29

+20
−22

Total +33.6
−44.3

+25.0
−29.5

+21.6
−23.0

ms(O(a4
s),PMS) 89.3 76.8 66.5 73.2 ± 17

O(a4
s)

−3.0
+3.2

−6.4
+8.6

−7.6
+11.6

others +34
−44

+25
−30

+20
−22

Total +33.4
−44.3

+25.6
−29.8

+23.0
−23.4

Table 1: An update of the Table 1 of [1] /Gámiz,Jamin,Pic,Prades,Schwab (2004)/
for ms extracted from recent exp.data of the OPAL collaboration /G.Abbiendi et
al, (2004)/ with subtracted longitudinal contribution accoding to [1]. The contour
improvement has been done with the Adler function DL+T

2 . “others” ⇒ all
uncertainties (added in quadrature) of the input parameters different from the
O(a3

s) (or O(a4
s)) terms in the perturbative contribution. The last colomun shows

a weighted average over the different moments ( as the individual error for a given
moment we have chosen the larger one)



Parameter (2,0) (3,0) (4,0) w. aver

ms(O(a3
s), exact) 92.4 83.0 74.2 79.6 ± 17

O(a3
s)

−2.6
+2.8

−4.6
+5.5

−5.6
+7.3

others +34
−44

+24
−29

+20
−22

Total +33.6
−44.3

+25.0
−29.5

+21.3
−23.0

ms(O(a4
s),PMS) 97.9 79.3 65.7 74.7 ± 17

O(a4
s)

−5.5
+6.5

−3.3
+3.7

−6
+8.4

others +34
−44

+24
−29

+20
−22

Total +41
−45

+24.0
−29

+22
−23

Table 2: The same as Table I but with the contour improvement done directly for
ΠL+T

2

⇒ at O(a4
s) weighted averages of both tables are close and lead to

ms(Mτ)5-loops = 74 ± 23 MeV

which should be compared to

ms(Mτ)4-loops = 84 ± 23 MeV according to /Gámiz, et al (2004)/



Summary: αs

• α4
s-terms for Re+e− and Rτ are important for improved

determination of αs

• subleading nf terms are available

• reasonable agreement with previous estimates

⇒ improved value for αs

• complete calculation of α4
s-terms for Rτ and Re+e− in the massless

limit is possible and is currently under way

• difference between CIPT and FOPT results seems to persist in higher orders



Summary: ms

• analytical QCD result for at m2
sαs

3 order contribution to Rτ is

available

• comparison of the exact result to predictions from various

”optimization schemes” demonstrate striking success (relative

accuracy around 1(!) percent) of PMS and FAC

• the success strongly suggests to consider and to use the PMS

prediction for m2
sαs

4 as quite reliable one

• pure convergence of the PT series for ms ⇒ requires new ideas

(clever than L + T choice of the integration weight? /Kambor,

Maltman (2000)/)

• accurate measurements of lower moments of Rτ,S are important

to decrease unphysical dependence of ms from the moment

• no way to compute m2
sαs

4-term in any foreseeable future


