Muon g-2: a theoretical review

Tau04 Nara, September 2004

Outline

QED: present and future (T. Kinoshita) Electroweak loops

Hadronic effects

* vacuum polarization

(J. Kühn, S. Eidelman, D. Leone, M. Davier, B. Schwarz, K. Hagiwara)

* light-by-light scattering

Summary and outlook

Muon g-2: Standard Model update

	Units: 10-11		u y
QED	116 584 719 (1)	hep-ph/0402206	Ž V
Hadronic LO NLO LBL	6 963 (72) - 98 (1) 120 (40)	hep-ph/0308213 hep-ph/0312250 tentative, see hep-ph/0312226	hadrons μ \langle γ
Electroweak	154 (3)	hep-ph/0212229	μ Z
Total SM	116 591 858 (82)		ζ _γ
			(*

Experiment – SM Theory = $222 (102) (2.2\sigma \text{ deviation})$

Muon g-2: new data

Brookhaven, January 2004: μ measurement.

QED contributions: muon vs. electron

Leading five-loop effects must be included!

QED contributions: problems at 4-loop order

Traditional approach (T. Kinoshita and M. Nio (Nara)): numerical problems, digit deficiency

New approach (various groups, in progress): Combine numerical and algebraic methods

Reduce all integrals to a smaller basis

Evaluate the primitive integrals numerically, with high accuracy.

Example: integration by parts

$$J(a_{1}, a_{2}) = \int d^{D}k \frac{1}{(k^{2})^{a_{1}}(k^{2} + 2kp)^{a_{2}}}$$
$$0 = p_{\mu} \int d^{D}k \frac{\partial}{\partial k_{\mu}} \frac{1}{(k^{2})^{a_{1}}(k^{2} + 2kp)^{a_{2}}}$$

New approach to the QED part

Obstacles:

Very large number of integrals Reduction to primitive integrals Evaluation of master integrals

Recent progress: algorithmic reduction (Laporta, 2001)

Electroweak effects: pure and hadronic

Small part of the total g-2: $154(3) \times 10^{-11}$

Higher-order electroweak effects

Most important: photonic corrections \rightarrow large logs

$$\frac{\alpha}{\pi}G_{\mu}m_{\mu}^{2}\ln\frac{M_{W}^{2}}{m_{\mu}^{2}} \sim -23\% \text{ of one-loop}$$

Kukhto et al. AC, Krause, Marciano Heinemaier, Stockinger, Weiglein

Muon g-2: hadronic loops

Hadronic effects dominate theoretical uncertainty:

Vacuum polarization Light-by-light scattering Electroweak triangle diagrams (numerically small)

Electroweak-hadronic effects

Large logs $ln(m_{\mu}/M_{z})$ appear in individual fermion contributions;

But cancel in the sum for each generation – like anomalies.

This cancellation between leptons and hardons was contoversial.

> AC, Marciano, Vainshtein vs. Knecht, Peris, Perrottet, de Rafael

Useful illustration: similar techniques used in light-by-light

Structure of the triangle

$$\sim w_T \left(q^2\right) \left(-q^2 \tilde{F}_{\mu\nu} + q_\mu q^\sigma \tilde{F}_{\sigma\nu} - q_\nu q^\sigma \tilde{F}_{\sigma\mu}\right) + w_L \left(q^2\right) \left(q_\nu q^\sigma \tilde{F}_{\sigma\mu}\right)$$

Perturbative result:

$$w_L = 2w_T \sim \frac{1}{q^2}$$

Anomaly:

$$q_{\nu}T^{\mu\nu} \sim q^2 w_L \neq 0$$
$$q_{\mu}T^{\mu\nu} = 0$$

Vainshtein's non-renormalization theorem for $\boldsymbol{w}_{\mathsf{T}}$

$$T_{\mu\nu} \sim w_T (q^2) (-q^2 \tilde{F}_{\mu\nu} + q_\mu q^\sigma \tilde{F}_{\sigma\nu} - q_\nu q^\sigma \tilde{F}_{\sigma\mu}) + w_L (q^2) (q_\nu q^\sigma \tilde{F}_{\sigma\mu})$$

In the chiral limit, w_T has no perturbative corrections
Idea of the proof:

$$Im T_{\mu\nu} \sim q_{\mu}q^{\sigma}\tilde{F}_{\sigma\nu} + q_{\nu}q^{\sigma}\tilde{F}_{\sigma\mu} \qquad \text{(symmetric)}$$

$$2w_{T}(q^{2}) = w_{L}(q^{2}) \qquad \qquad \text{Guidance from one-loop}$$
calculations!

 $w_{T,L}$ in QCD (chiral limit)

Perturbative:
$$w_L = 2w_T = \frac{2}{Q^2}$$
 $Q^2 \equiv -q^2$

Non-perturbative:

Large Q² $w_L = \frac{2}{Q^2}$ $w_T = \frac{1}{Q^2} - \frac{(0.7 \,\text{GeV})^4}{Q^6} + O\left(\frac{1}{Q^8}\right)$ $M_T = \frac{1}{Q^2} - \frac{(0.7 \,\text{GeV})^4}{Q^6} + O\left(\frac{1}{Q^8}\right)$ $M_T = \frac{1}{m_{a_1}^2 - m_{\rho}^2} \left(\frac{m_{a_1}^2 - m_{\pi}^2}{Q^2 + m_{\rho}^2} - \frac{m_{\rho}^2 - m_{\pi}^2}{Q^2 + m_{a_1}^2}\right)$

(model for w_T)

Contributions to g-2

$$\Delta a_{\mu} \sim \left(\frac{\alpha}{\pi}\right)^{2} \frac{m_{\mu}^{2}}{M_{Z}^{2}} \int_{m_{\mu}^{2}}^{\infty} dQ^{2} \left(w_{L} + \frac{M_{Z}^{2}}{M_{Z}^{2} + Q^{2}} w_{T}\right)$$

Asymptotics:

$$w_{T,L} \xrightarrow{Q^2 \to \infty} \frac{1}{Q^2} \sum_f I_{3f} N_f Q_f^2$$

$$\int_{0}^{\infty} dQ^2 w_L$$
: diverges

theory inconsistent unless anomalies cancel

$$\int_{-\infty}^{\infty} dQ^2 \, \frac{M_Z^2}{M_Z^2 + Q^2} \, w_T \sim \ln M_Z^2$$

"Pure" hadronic contributions

Recent progress Updated studies of g-2 using e⁺e⁻ data

Davier, Eidelman, Höcker, Zhang Hagiwara, Martin, Nomura, Teubner

Novosibirsk results tested by Daphne

See talks by Kühn, Leone, Shwartz

Shift of the light-by-light prediction Melnikov and Vainshtein

Vacuum polarization: τ decays vs. e^+e^-

Vacuum polarization: e^+e^-

e⁺e⁻ data have greatly improved New results from KLOE confirm Novosibirsk CMD2

From A. Denig

Hadronic contributions: outstanding problems

How to reconcile e^+e^- and τ data?

Can we improve the light-by-light prediction?

Light-by-light scattering

Recent evaluations:

Knecht, Nyffeler Hayakawa, Kinoshita Bijnens, Pallante, Prades Melnikov, Vainshtein

80(40) 90(15) 83(32) 136(25)

Effects enhanced by N_c

Quark box: pQCD asymptotics

The same structure as in the EW-hadronic loops.

Dominant contribution: π^0 pole Crucial observation: $1/Q^2$ asymptotics \rightarrow no formfactor in $\pi^*\gamma^*\gamma$ if one of the photons soft.

$$\Delta a_{\mu}^{\text{PS}} \simeq (76.5 + 2 \cdot 18) \cdot 10^{-11}$$
$$\Delta a_{\mu}^{\text{PV}} \simeq 22 \cdot 10^{-11}$$

What about terms subleading in N_c?

Example: pion box. It is chirally enhanced, m_{μ}^2 / m_{π}^2

Numerical effect: small.

Previous estimates:

-4.5(8.5)×10⁻¹¹ HLS Hayakawa, Kinoshita, Sanda -19(5)×10⁻¹¹ VMD Bijnens, Pallante, Prades

Melnikov & Vainshtein: $0\pm10\times10^{-11}$ (cancellations with higher orders in the chiral expansion)

Summary on the light-by-light scattering

Matching of hadronic model with perturbative QCD, at asymptotic momentum transfer. Large contribution of high virtualities.

Dominant in $N_c \rightarrow \infty$: pion pole

Still room for improvement: subleading terms

Pomeranchuk and Sakharov on g-2= $\frac{\alpha}{\pi}$

If this is true, it's exceptionally important; if it isn't true, that, too, is exceptionally important. (Pomeranchuk after Sakharov's talk, 1949)

I felt like the messenger of the gods. (Sakharov)

How do we determine g-2?

M

 \boldsymbol{B}

Measure
$$\omega_a = \frac{g-2}{2} \frac{e}{m_{\mu}} B$$

B from NMR: $\omega_p = \frac{2\mu_p B}{\hbar}$
 $\frac{e}{m_{\mu}}$ from $\mu_{\mu} \equiv g \frac{e\hbar}{4m_{\mu}}$
Master formula: $\frac{g-2}{2} = \frac{\omega_a / \omega_p}{\mu_{\mu} / \mu_p - \omega_a / \omega_p}$
From muonium

Muonium spectrum determines μ_{μ}/μ_{p}

$$\begin{split} \nu_{34} - \nu_{12} &\sim \mu_{\mu} B \implies \mu_{\mu} / \mu_{p} \\ \text{Measured to relative } 1.2 \cdot 10^{-7} \text{ (like } 15 \cdot 10^{-11} \text{ in } a_{\mu}) \\ \text{Will need improvement for the ``next } g-2'' \\ \text{Mu: also } m_{\mu} / m_{e} \text{ and tests of QED} \end{split}$$