The Radiative Return and Form Factors at Large Q^2 J.H. KÜHN, TTP, KARLSRUHE

- Basic Idea
- I Monte Carlo Generators: Status & Perspectives
- III Nucleon Form Factors at B-Factories
- IV Pion and Kaon Form Factors at large Q^2 and $au o
 u K^- K^0$
- V Conclusions

BASIC IDEA

photon radiated off the initial e^+e^- (ISR) reduces the effective energy of the collision $d\sigma(e^+e^- \rightarrow {
m hadrons} + \gamma) = H(Q^2, \theta_\gamma) \ d\sigma(e^+e^- \rightarrow {
m hadrons})$

measurement of R(s) over the full range of energies, from threshold up to √s
 large luminosities of factories compensate α/π from photon radiation
 radiative corrections essential (NLO)
 advantage over energy scan (BES, CMD2, SND): systematics (e.g. normalization) only once

High precision measurement of the hadronic cross-section at DA Φ NE, CLEO-C, B-factories

Rough estimates for rates:

 $\pi^{+} \pi^{-} \gamma : E_{\gamma} > 100 MeV$ $\frac{\sqrt{s} [GeV] \left| \int \mathcal{L} [fb^{-1}] \# \text{events}, \ \theta_{min} = 7^{\circ} \right|}{1.02 \qquad 1.35 \qquad 16 \cdot 10^{6}}$ $10.6 \qquad 100 \qquad 3.5 \cdot 10^{6}$

multi-hadron-events (R \equiv 2) $\sqrt{s} = 10.6~GeV$

Q^2 -interval $[GeV]$	$\#$ events, $ heta_{min}=7^{\circ}$
[1.5, 2.0]	$9.9 \cdot 10^5$
$[\ 2.0\ ,\ 2.5\]$	$7.9 \cdot 10^5$
$[\ 2.5\ ,\ 3.0\]$	$6.6 \cdot 10^5$
[3.0, 3.5]	$5.8 \cdot 10^5$

Lowest order

$$\frac{d\sigma}{dQ^2} \left(e^+ e^- \to \gamma + \operatorname{had}(Q^2) \right) = \sigma \left(e^+ e^- \to \operatorname{had}(Q^2) \right)$$
$$\times \frac{\alpha}{\pi s} \left\{ \begin{array}{c} \frac{s^2 + Q^4}{s(s - Q^2)} \left(\log(s/m_e^2) - 1 \right), \text{ no angular cut} \\ \frac{s^2 + Q^4}{s(s - Q^2)} \log\left(\frac{1 + \cos \theta_{\min}}{1 - \cos \theta_{\min}} \right) - \frac{s - Q^2}{s} \cos \theta_{\min} \end{array} \right\}$$

$$\Rightarrow \text{ differential luminosity: } \frac{dL}{dQ^2}(Q^2,s) = \frac{\alpha}{\pi s} \left\{\cdots\right\} L(\text{at } s)$$

e.g. $heta_{min}=30^\circ$; $\sqrt{s}=10.58~{
m GeV}$; $Q=1~{
m GeV}$; $\Delta Q=0.1~{
m GeV}$

$$\frac{dL}{dQ^2} \left(Q^2, s\right) \Delta Q^2 = 7.6 \cdot 10^{-6} L(\text{at } s)$$
100 fb⁻¹ at 10.58 GeV $\Rightarrow 0.76 \text{ pb}^{-1}$ per scan point at 1 GeV

J.H. Kühn, TAU 04

The Radiative Return and Form Factors at Large Q^2 4

Basic Ingredients for Pion Formfactor

► ISR

overestimated)

additional radiation: collinear (EVA MC)
 or NLO calculation (PHOKHARA MC)

II MONTE CARLO GENERATORS

P H OTONS FROM KARLSRUHE H ADRONICALLY R ADIATED

References etc. \rightarrow http://cern.ch/german.rodrigo/phokhara

J.H. Kühn, TAU 04

The Radiative Return and Form Factors at Large Q^2 6

• modular structure

- 1 LL at a fixed order + subleading terms (1 %)
- **2** Full angular dependence
- **8** Momentum conservation
- Tagged or untaggedphoton

PHOKHARA 3.0

- ▶ specifically developed for $\pi^+\pi^-$ (plus photons)
- allows for simultaneous emission of photons from initial and final state, including virtual corrections (interference neglected).

⇒ dominated by "two step process": $e^+e^- \rightarrow \gamma \ \rho \ (\rightarrow \gamma \ \pi \pi)$ ⇒ importance of $\pi \pi \gamma$ as input for a_{μ}

Large effect for $Q^2 < m_{ ho}^2\,$ eliminated by suitable cuts on $\pi^+\pi^-$ configuration (suppress 2γ events)

 \Rightarrow Talk by D. Leone

or measure photon

Experimental Perspectives

BABAR, BELLE

higher Q^2 available

 \Rightarrow measurement of R(Q^2) from threshold up to at least 5 GeV. Examples:

PHOKHARA 4.0

- $\mu^+\mu^-\gamma$ with FSR at NLO
- vacuum polarisation can be switched on
- nucleon pair production included

To be done:

- three mesons: $3\pi~(
 ightarrow
 ho\pi)$, $KK\pi$
- $KK\pi\pi$, 4K
- narrow resonances

parameters of J/ψ , ψ' : observable: $\Gamma_e \frac{\Gamma_f}{\Gamma_{tot}}$; $f = \mu^+ \mu^-$, $\pi^+ \pi^-$, 3π , 4π , 4K, ... compare: $\frac{\sigma_f}{\sigma_{\mu^+\mu^-}}(off \ resonance) \stackrel{?}{=} \frac{\sigma_f}{\sigma_{\mu^+\mu^-}}(on \ resonance)$ $f = \mu^+ \mu^-$, $\pi^+ \pi^-$, 4π , ... virtual photon only (I=1) $f = 3\pi$, $K\bar{K}$, $K\bar{K}\pi$, ... 3 gluon intermediate state (I=0)

12

III NUCLEON FORM FACTORS

(with Czyż, Nowak, Rodrigo, hep-ph/0403062)

 $Q^2\gtrsim 4m_N^2$ accessible at B-factories \Rightarrow study $e^+e^ightarrow\gamma Nar{N}$ (with N=p or n)

hadronic current:

or

$$G_M = F_1 + F_2\,, ~~~G_E = F_1 + rac{Q^2}{4m^2}\,F_2$$

Result:

$$d\sigma = rac{1}{2s} L_{\mu
u} H^{\mu
u} \, d\Phi_2(p_1+p_2;Q,k) \, d\Phi_2(Q;q_1,q_2) rac{dQ^2}{2\pi},$$

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{(4\pi\alpha)^3}{Q^2} \bigg\{ \bigg(|G_M^N|^2 - \frac{1}{\tau} |G_E^N|^2 \bigg) \\ &\times \frac{32s}{\beta_N^2(s-Q^2)} \bigg(\frac{1}{y_1} + \frac{1}{y_2} \bigg) \bigg(\frac{(p_1 \cdot q)^2 + (p_2 \cdot q)^2}{s^2} \bigg) \\ &+ 2 \bigg(|G_M^N|^2 + \frac{1}{\tau} |G_E^N|^2 \bigg) \bigg[\bigg(\frac{1}{y_1} + \frac{1}{y_2} \bigg) \frac{(s^2 + Q^4)}{s(s-Q^2)} - 2 \bigg] \bigg\} \,, \end{split}$$

where

$$y_{1,2} = rac{s-Q^2}{2s} (1\mp\cos heta_\gamma)\,, ~~~ au = rac{Q^2}{4m_N^2}\,, ~~~eta_N^2 = 1 - rac{4m_N^2}{Q^2}$$

Separation of $|G_M|^2$ and $|G_E|^2$ through angular distribution:

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{(4\pi\alpha)^3}{Q^2} \frac{(1+\cos^2\theta_{\gamma})}{(1-\cos^2\theta_{\gamma})} \\ &\times 4\left(|{\pmb G}_M^{\pmb N}|^2 \left(1+\cos^2\hat\theta\right) + \frac{1}{\tau} |{\pmb G}_E^{\pmb N}|^2 \, \sin^2\hat\theta \right) \end{split}$$

 $\hat{\theta}$ = angle of nucleon with respect to γ -direction in hadronic rest frame (valid for $s/Q^2 \ll 1$, corrections and "optimal frame" \rightarrow hep-ph/0403062 \Rightarrow additional rotation by $\theta_D = \frac{1}{2} \arctan\left(\frac{2s_{\gamma}c_{\gamma}}{\gamma\left(\beta^2 + c_{\gamma}^2 - s_{\gamma}^2/\gamma^2\right)}\right) \approx \frac{1}{\gamma} \frac{s_{\gamma}c_{\gamma}}{1 + c_{\gamma}^2}$ with $s_{\gamma} = \sin \theta_{\gamma}$, $\beta = (s - Q^2)/(s + Q^2)$, $\gamma = (s + Q^2)/2\sqrt{sQ^2}$)

Similarity to $e^+e^- o Nar{N}$:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta_N}{4Q^2} \left(|\boldsymbol{G}_M^N|^2 \left(1 + \cos^2 \theta \right) + \frac{1}{\tau} |\boldsymbol{G}_E^N|^2 \sin^2 \theta \right)$$

J.H. Kühn, TAU 04

The Radiative Return and Form Factors at Large Q^2 15

Implementation on basis of model for form factor:

implementation in PHOKHARA

Angular distributions of nucleon

lab frame

hadronic rest frame

(two choices for G_M/G_E)

Comments

- similar results for neutron pair production
- NLO corrections from ISR included (corrections $\sim 1-2\%$)
- no FSR

thousands of events around 4–5 GeV² several events up to 7–8 GeV²

IV MESON FORM FACTORS at LARGE Q^2

(with Bruch, Khodjamirian, hep-ph/0409080)

radiative return will explore large Q^2

convenient representation for F_{π} : generalized VDM with ρ , ρ' , ... combined with Veneziano-type tower of resonances (Dominguez)

$$egin{split} m{F}_{\pi}(s) &= \sum\limits_{n=0}^{\infty} c_n rac{m_n^2}{m_n^2 - s}, \ c_n &= rac{(-1)^n \Gamma(eta - 1/2)}{\sqrt{\pi} (rac{1}{2} + n) \Gamma(n+1) \Gamma(eta - 1 - n)}, \ m_n^2 &= m_
ho^2(1 + 2n)\,, \ m{eta} &= ext{free parameter} \end{split}$$

Modifications:

- finite widths
- parameters of ho, ho', ho'' fitted to data
- Breit-Wigner for ρ , ρ' , ρ'' with Q^2 -dependent widths \Rightarrow reasonable agreement between model and fit

Parameter	Input	Fit(KS)	Fit(GS)	dual-	PDG value
				$QCD_{N_c=\infty}$	
$m_{ ho}$	-	773.9 ± 0.6	776.3 ± 0.6	input	775.5 ± 0.5
$\Gamma_{ ho}$	-	144.9 ± 1.0	150.5 ± 1.0	input	150.3 ± 1.6
m_ω	783.0	-	-	-	782.59 ± 0.11
Γ_{ω}	8.4	-	-	-	8.49 ± 0.08
$m_{ ho'}$	-	1357 ± 18	1380 ± 18	1335	1465 ± 25
$\Gamma_{ ho'}$	-	437 ± 60	340 ± 53	266	400 ± 60
$m_{ ho^{\prime\prime}}$	1700	-	-	1724	1720 ± 20
$\Gamma_{ ho''}$	240	-	-	344	250 ± 100
$m_{ ho^{\prime\prime\prime}}$	-	-	-	2040	-
$\Gamma_{ ho^{\prime\prime\prime}}$	-	-	-	400	-
c_0	-	1.171 ± 0.007	1.098 ± 0.005	1.171	-
$oldsymbol{eta}$	c_0	2.30 ± 0.01	2.16 ± 0.015	2.3(input)	-
c_{ω}	0.00184(KS)	-	-	-	-
	0.00195(GS)				-
c_1	-	-0.119 ± 0.011	-0.069 ± 0.009	-0.1171	-
c_2	-	0.0115 ± 0.0064	0.0216 ± 0.0064	-0.0246	
c_3	$\sum c_n{=}1$	-0.0438 ∓ 0.02	-0.0309 ∓ 0.02	-0.00995	-
$\sum_{n=4}^{\infty} c_n$	-0.01936	-	-	-0.01936	-
$\chi^2/d.o.\overline{f}.$	-	155/101	153/101	-	-

J.H. Kühn, TAU 04

The Radiative Return and Form Factors at Large Q^2 21

data point at 3.1 GeV $(J/\Psi
ightarrow \pi\pi)$ cannot be accomodated

spacelike region:

good agreement with data and with sum rules

$$e^+e^-
ightarrow K^+K^-\,,~K^0ar{K}^0$$

isospin symmetry:

$$\begin{split} F_{K^+} &= +F^{(I=1)} + F^{(I=0)} \\ F_{K^0} &= -F^{(I=1)} + F^{(I=0)} \end{split}$$

resonances:

$$\begin{split} F_{K^+}(s) &= +\frac{1}{2} \Big(c_{\rho}^K B W_{\rho}(s) + c_{\rho'}^K B W_{\rho'}(s) + c_{\rho''}^K B W_{\rho''}(s) \Big) \\ &\quad + \frac{1}{6} \Big(c_{\omega}^K B W_{\omega}(s) + c_{\omega'}^K B W_{\omega'}(s) + c_{\omega''}^K B W_{\omega''}(s) \big) \\ &\quad + \frac{1}{3} \Big(c_{\phi} B W_{\phi}(s) + c_{\phi'} B W_{\phi'}(s) \Big) \,, \end{split}$$

$$\begin{split} F_{K^0}(s) &= -\frac{1}{2} \Big(c_{\rho}^K B W_{\rho}(s) + c_{\rho'}^K B W_{\rho'}(s) + c_{\rho''}^K B W_{\rho''}(s) \Big) \\ &+ \frac{1}{6} \Big(c_{\omega}^K B W_{\omega}(s) + c_{\omega'}^K B W_{\omega'}(s) + c_{\omega''}^K B W_{\omega''}(s) \Big) \\ &+ \frac{1}{3} \Big(\eta_{\phi} c_{\phi} B W_{\phi}(s) + c_{\phi'} B W_{\phi'}(s) \Big) \end{split}$$

J.H. Kühn, TAU 04

The Radiative Return and Form Factors at Large Q^2 24

quark model:

constraint: $f_
ho=f_\omega\,,\quad g_{
ho KK}=g_{\omega KK}$ $\Rightarrow c_
ho=c_\omega$

fit performed with **(solid curves)** or without **(dashed curves)** this constraint

The Radiative Return and Form Factors at Large Q^2 25

Results:

Parameter	Input	Fit(1)	Fit(2)	PDG value
			1010 055 1 0 00	
m_{ϕ}	-	1019.372 ± 0.02	1019.355 ± 0.02	1019.456 ± 0.02
Γ_{ϕ}	-	4.36 ± 0.05	4.29 ± 0.05	4.26 ± 0.05
m_{ϕ^\prime}	1680	-	-	1680 ± 20
$\Gamma_{\phi'}$	150	-	-	150 ± 50
$m_ ho$	775	-	-	775.8 ± 0.5
$\Gamma_{ ho}$	150	-	-	150.3 ± 1.6
$m_{ ho'}$	1465	-	-	1465 ± 25
$\Gamma_{ ho'}$	400	-	-	400 ± 60
$m_{ ho^{\prime\prime}}$	1720	-	-	1720 ± 20
$\Gamma_{\rho^{\prime\prime}}$	250	-	-	250 ± 100
m_{ω}	783.0	-	_	782.59 ± 0.11
Γ_{ω}	8.4	-	-	8.49 ± 0.08
$m_{\omega'}$	1425	-	-	1400-1450
$\Gamma_{\omega'}$	215	-	-	180-250
$m_{\omega^{\prime\prime}}$	1670	-	_	1670 ± 30
$\Gamma_{\omega^{\prime\prime}}$	315	-	-	315 ± 35
c_{ϕ}	-	1.018 ± 0.006	0.999 ± 0.007	-
$c_{\phi'}$	$1 - c_{\phi}^{K}$	-0.018 ∓ 0.006	0.001 ∓ 0.007	-
c_{ρ}^{K}	-	1.195 ± 0.009	1.139 ± 0.010	-
$c_{\rho'}^{K}$	-	-0.112 ± 0.010	-0.124 ± 0.012	-
$c_{ ho^{\prime\prime}}^{K}$	$1 - c_{\rho}^{K} - c_{\rho'}^{K}$	-0.083 ∓ 0.019	-0.015 ∓ 0.022	-
$c^{K}_{\omega}(1)$	$c_{ ho}^{K}$	1.195 ± 0.009	-	-
$c^{K}_{\omega}(2)$	-	-	1.467 ± 0.035	-
$c^{K}_{\omega'}(1)$	$c_{o'}^K$	-0.112 ± 0.010	-	-
$c_{\omega'}^{\tilde{K}}(2)$	- P	-	-0.018 ± 0.024	-
$c_{\omega''}^{\tilde{K}}$	$1-c^K_\omega-c^K_{\omega'}$	-0.083 ∓ 0.019	-0.449 ∓ 0.059	-
$ ilde{\chi^2/d.o.f.}$	-	328/242	281/240	-

The Radiative Return and Form Factors at Large Q^2 27

Spectral function separated for I = 0 and I = 1

(useful for electroweak analysis!)

significant model dependence above 1.5 GeV (poor data for $|F_{K^0}|^2$!)

$$au
ightarrow K^- K^0
u$$

Predictions based on isospin symmetry and I = 1 part of form factor:

$$\begin{split} \left(\frac{1}{BR(\tau \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}\right) \frac{dBR(\tau \to K^- K^0 \nu_{\tau})}{d\sqrt{Q^2}} = \\ \frac{|V_{ud}|^2}{2m_{\tau}^2} \left(1 + \frac{2Q^2}{m_{\tau}^2}\right) \left(1 - \frac{Q^2}{m_{\tau}^2}\right)^2 \left(1 - \frac{4m_K^2}{Q^2}\right)^{3/2} \\ \times \sqrt{Q^2} |F_{K^- K^0}(Q^2)|^2 \\ \text{and } F_{K^- K^0} = -F_{K^+} + F_{K^0} \\ \Rightarrow BR(\tau \to K^- K^0 \nu_{\tau}) = 0.19 \pm 0.01\% \ (0.13 \pm 0.01\%) \end{split}$$

to be compared with

$$BR(au o K^- K^0
u_ au) = 0.154 \pm 0.016\%.$$

will provide further constraints!

J.H. Kühn, TAU 04

The Radiative Return and Form Factors at Large Q^2 30

V Conclusions

- continuous development of PHOKHARA
 - \Rightarrow radiative corrections
 - \Rightarrow more channels
 - \Rightarrow cooperation between theory and experiment crucial
- nucleon form factors:

 G_E and G_M can be measured for a wide range of Q^2

• pion form factor: structures at large Q^2 kaon form factors: K^+K^- & $K^0\bar{K}^0 \Rightarrow K^-K^0$ \Rightarrow prediction for $\tau \rightarrow \nu K^-K^0$