

- 2. Experiments at VEPP-2M $(e^+e^- \rightarrow \pi^+\pi^-, \dots)$
- 3. Future (VEPP-2000)
- 4. Conclusions

• Muonium HFS

- Peak luminosity: $L_{\text{peak}} = 3 \cdot 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated luminosity $\approx 100 \text{ pb}^{-1}$ in Novosibirsk below 1.4 GeV compared to $\approx 6 \text{ pb}^{-1}$ in Orsay and Frascati at $1.4 < \sqrt{s} < 3.0 \text{ GeV}!$

absorber; 9 - streamer tubes; 10 - 1 cm iron plates; 11 - scintillation counters; 12 and 13 - elements of the collider magnetic system

Some Features of Experiments with CMD-2 and SND

- large data samples due to the high integrated luminosity and large acceptance (calorimetry in $\Omega \approx 0.9 \times 4\pi$)
- multiple scans of the same energy range to avoid possible systematics; $\Delta(\sqrt{s}) = 10$ MeV in the continuum and 1 MeV near the ω and ϕ peaks
- absolute calibration of the beam energy using the resonance depolarization method
 ⇒ a negligible systematic error from an uncertainty in the energy measurement
- good space and energy resolution lead to small background
- redundancy unstable particles are independently detected via different decay modes $(\pi^0 \to 2\gamma, e^+e^-\gamma; \eta \to 2\gamma, \pi^+\pi^-\pi^0, 3\pi^0; \omega \to \pi^+\pi^-\pi^0, \pi^0\gamma)$
- detection efficiencies and calorimeter response are studied by using "pure" experimental data samples rather than Monte Carlo events: more than 20 million ω and ϕ meson decays can be used.

How Do We Measure R?

$$\sqrt{s} < 2 \text{ GeV} - ext{exclusive modes}$$

 $(\pi^+\pi^-, \pi^+\pi^-\pi^0, \dots, K\bar{K}, \dots)$

- Possibly missing (small σ , undetected) final states
- Above 2 GeV total R (all multihadronic events)
- Initial state radiation (ISR), vacuum polarization (VP), final state radiation (FSR): M. Drees, K. Hikasa, 1990

$$\sigma_{\rm bare} = \sigma_{\rm dressed} |1 - \Pi(s)|^2$$

$N_{\rm ev} = 4000, \ e/\mu/\pi$ separation by the momentum in DC

 $N_{\rm ev} \approx 630 \cdot 10^3, \, e, \mu/\pi$ separation by energy deposition in CsI

 $N_{\rm ev} = 33 \cdot 10^3, \, e, \mu/\pi$ separation by energy deposition in CsI

CMD-2 is using a MC generator based on A. Arbuzov et al., 1997; its accuracy $\sim 0.2\%$; agrees with BHWIDE and BABAYAGA within claimed accuracy.

S.Eidelman, BINP

p.12/23

Budget of
$$e^+e^- \to \pi^+\pi^-$$

Source $/\sqrt{s}$, GeV	$0.37 \div 0.52$	$0.6{\div}0.96$		$1.04 \div 1.38$
$N_{\pi\pi}, 10^3$ / Number of points	4/10	114/43	520/29	33/36
Stat. error/point, $\%$	6.0	4.0	1.5	$5.0 \div 13.0$
Fiducial volume, $\%$	0.2	0.2		$0.2{\div}0.5$
Detection efficiency, $\%$	0.3	0.2	0.9	$0.5{\div}2.0$
Pion losses, $\%$	0.2	0.2		0.2
Radiative corrections, $\%$	0.3	0.4		$0.5{\div}2.0$
Background events, $\%$	< 0.1	< 0.1		$0.6{\div}1.6$
Beam energy calibration, $\%$	0.3	0.1	0.3	$0.7{\div}1.1$
Event separation, $\%$	1.0	0.2		$0.5{\div}3.5$
Total systematic error, %	1.2	0.6	1.1	$1.3 \div 5.0$

Large data scatter above 1.4 GeV!

p.16/23

 $ho-, \omega-, \phi-$ mesons dominate the cross sections. From upper limits on nonresonant cross sections $a_{\mu}^{\text{rad,LO}} < 0.7 \cdot 10^{-10}$.

About $94 \cdot 10^3$ detected events. The systematic error is 2.0–2.5% at the ω and 5% at the ϕ .

p.18/23

Tau-2004

S.Eidelman, BINP

p.19/23

Measurements at 1.4 GeV $<\sqrt{s} < 2$ GeV

- 5 resonances $(2\rho', 2\omega', \phi')$ with badly known properties
- Mixing of qq̄ with hybrids?
- In 2001 E687 (FNAL) observed a narrow dip in $\gamma p \rightarrow 3\pi^+ 3\pi^- p$, M=1911 ± 4 ± 1 MeV, $\Gamma = 29 \pm 11 \pm 4$ MeV
- Earlier observed in e^+e^- : DM2 (1988) - $e^+e^- \rightarrow 6\pi$, FENICE (1996) - $e^+e^- \rightarrow$ hadrons
- A hybrid or NN state?

$$\gamma p \to 3\pi^+ 3\pi^- p$$

The design luminosity $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, with $\int L dt \approx 1 - 2 \text{ fb}^{-1}$ during 3–5 years $\Delta a_{\mu}^{\text{had}}/a_{\mu}^{\text{had}}$ can be improved by a factor of 2!

Conclusions

- High integrated luminosity was collected with 2 detectors (CMD-2 and SND) at VEPP-2M at 370 MeV $<\sqrt{s}<1380$ MeV
- Parameters of the ρ, ω, ϕ mesons were measured with high precision
- $\sigma(e^+e^- \to \pi^+\pi^-)$ was determined with a systematic error ~ 1% or better (0.6%) in the region of the ρ
- Cross sections of the other dominant modes were measured with high statistical accuracy and a systematic error of about (5-7)%
- Rare exclusive channels including those with photons only were studied
- Measurements of R in Novosibirsk as well as in Beijing at 2 GeV $<\sqrt{s} < 5$ GeV allowed a new much more accurate determination of a_{μ}^{had}
- Future progress up to $\sqrt{s} = 2$ GeV will be possible at VEPP-2000 and up to $\sqrt{s} \sim 3$ GeV with radiative return experiments at KLOE, BaBar and Belle

Backup slides

p.29/23

p.30/23

