Search for $\tau \rightarrow e\gamma / \mu\gamma$

K. Hayasaka (Nagoya U.)
Belle Collaboration
Introduction

- Lepton Flavour Violating (LFV) process: forbidden in SM \leftrightarrow probe of new physics
- SUSY model predicts:
 - most sensitive mode in the LFV decays.
- We **SHOULD** search for
 - not only for $\tau \rightarrow \mu \gamma$ but also for $\tau \rightarrow e \gamma$.
KEKB accelerator/Belle detector

- asymmetric collider
- Peak Lum. 1.4×10^{34} (cm$^{-2}$s$^{-1}$)
- Total Logged Lum. 288fb$^{-1}$
- cross section@ $s \sim 110$GeV2
 $\sigma(b\bar{b}) : \sigma(\tau\tau) = 1.05 : 0.912$

- asymmetric detector
 - μ-ID: eff. 87.5%
 - e-ID: eff. 92.4%

▷ A B-factory is also a τ-factory!

Sep/15/2004

Tau04 @ Nara
Signatures of the Signal and of the BGs

- **Signal Event**
 - \((e+\gamma)+(\phi+n\gamma)\)
 - \(\text{generic decay}\)

- **Expected BG Events**
 - Bhabha process
 - \(\tau\tau\) process
Selection Criteria

- 2 charged tracks + more than 1 γ
 - signal side: 1 charged + 1 photon
 - tag side: 1 charged + n photons
- e-ID > 0.9 & e-ID < 0.1
- restrict kinematical variables
 - momentum $e, tag, \gamma, missing$
 - polar angle $e, tag, \gamma, missing$
 - opening angle
 - e-tag, $e-\gamma$, tag-missing
 - missing mass vs missing mom.
- analysis for 87 fb$^{-1}$ data sample

Sep/15/2004 Tau04 @ Nara
Nagoya Cut

- P_{miss} vs m_{miss}^2

$\tau\tau$ events have large missing mass

98% of the $\tau^+\tau^-$ bkg is removed.

Sep/15/2004

Tau04 @ Nara
M_{e\gamma} and \Delta E resolutions

- All selections applied for signal MC events

\[M_{e\gamma} = \sqrt{(P_e + P_\gamma)^2} \]

\[\Delta E = E_e + E_\gamma - E_{\text{beam}} \] @CM

- Asymmetric Gaussian

25.7/14.3 MeV/c^2 84.8/36.0 MeV

6.5\%

±5σ region

Sep/15/2004 Tau04 @ Nara
Blind Analysis

- Signal dominant region is masked.

\[\Delta E(\text{GeV}) \]
\[M_{\tau\tau}(\text{GeV/c}^2) \]

\[\tau\tauBG \ : \ \tau\tauMC \]

Bhabha BG : data

Shape of BG distribution is evaluated.

Its height is decided with data distribution of the side-band region.

side-band region
BG distribution (MC)

- Estimate BG distribution from $\tau\tau$ MC

curve (Landau+Gauss)

reproduce BG distribution by function
BG distribution (data)

- Estimate from MC and side-band of data

data(side band)

$64 \quad \tau\tau \quad MC \quad ee \quad 61 \quad 3 \quad \tau\tau MC$

Masked!

Profile plot

Curve (Landau+Gauss)
Final Candidates ($\tau \rightarrow e\gamma$)

- 60 events found. (# of estimated BG: 64)
- 20 events survived in $\pm 5\sigma$ region

Diagram:
- Signal MC
 - $\pm 5\sigma$
- Signal events dominate
- 5 plots showing $M_{\gamma}(\text{GeV}/c^2)$ distributions with different ΔE ranges:
 - 1.5 - 1.6
 - 1.6 - 1.7
 - 1.7 - 1.8
 - 1.8 - 1.9
 - 1.9 - 2.0

Legend:
- signal MC
- surviving data

Sep/15/2004

Tau04 @ Nara
Evaluation of signal events

- fit by unbinned expanded maximum likelihood with signal and BG shape \(s_0 = 0, b_0 = 20 \)
- Estimation for U.L. of \(s_{90} \) @ 90%CL
 by Toy MC: generate 10000 events

Result

- \(s_{90} = 3.8 \) events

Branching fraction

\[\text{Br} = s_0 / 2 \varepsilon N_{\tau\tau} < 3.8 \times 10^{-7} \]

\(\varepsilon \): detection efficiency

\(N_{\tau\tau} \): total event number

<table>
<thead>
<tr>
<th>Signal yield: (s_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-ID ineff. 0.01/0.02 ev.</td>
</tr>
<tr>
<td>BG function 0.13 ev.</td>
</tr>
</tbody>
</table>

Efficiency & Luminosity:

\[2 \varepsilon N_{\tau\tau} \]

Track rec. eff.	2.0%
Photon rec. eff.	2.8%
Selection criteria	2.5%
Luminosity	1.4%
Trigger eff.	5.0%
MC statistics	0.2%
Total	6.8%
Search for $\tau \rightarrow \mu \gamma$

- Almost same selection criteria as $\tau \rightarrow e \gamma$
 - for tag side track, require not to be μ
- Main BG: $\tau \tau \gamma$ & $\mu \mu \gamma$ (from μ-ID ineff.)

Data

- τ pair MC ($\mu \mu$)
- Data ($\mu \mu$)

M_{inv}(GeV)

ΔE (GeV)

ΔE (GeV)

1.4~1.5

2.1~2.2

1.9~2.0

1.8~1.9

1.7~1.8

1.6~1.7

1.5~1.6

1.4~1.5

20

10

0

-10

-20

-0.5 0.0 0.5

-0.5 0.0 0.5

Sep/15/2004

Tau04 @ Nara
Final Candidates \((\tau \rightarrow \mu \gamma)\)

- 54 events survived in \(\pm 5\sigma\) region

\[
\begin{array}{c|c|c}
\Delta E (GeV) & \text{# of events} \\
-0.4 & 10 \\
-0.2 & 5 \\
0 & 0 \\
0.2 & 5 \\
0.4 & 10 \\
\end{array}
\]

- \(1.71 < M_{inv} < 1.82 GeV/c^2\)

- \(s=0\)

- Evaluation for U.L.
 - \(s=5.1 ev. @ 90\% C.L.\)
 - \(Br < 3.1 \times 10^{-7} @ 90\% C.L.\)

- \textit{fitting result (UEML)}

- \textit{including systemaric uncertainties}

Sep/15/2004
Tau04 @ Nara
Conclusion & Summary

- Obtain BR UL’s with **blind analyses**.
- BG distributions are modeled well.
- Results are 10 times more sensitive than CLEO’s.

$\tau \rightarrow e\gamma (86.7 \text{fb}^{-1})$
- $N_{\tau\tau} = 7.90 \times 10^7$
- 20 observed events
- $\varepsilon = 6.5\%$
- $s = 3.8 \text{ev. @90\%C.L.}$
- $\text{Br} < 3.8 \times 10^{-7} \text{ @90\%C.L.}$

$\tau \rightarrow \mu\gamma (86.3 \text{fb}^{-1})$
- $N_{\tau\tau} = 7.87 \times 10^7$
- 54 observed events
- $\varepsilon = 11\%$
- $s = 5.1 \text{ev. @90\%C.L.}$
- $\text{Br} < 3.1 \times 10^{-7} \text{ @90\%C.L.}$

cf. $\text{Br} < 2.7 \times 10^{-6} \text{ @90\%C.L. (CLEO)}$

Sep/15/2004

Tau04 @ Nara