Search for Lepton Flavour Violation (LFV) in Three-Body Tau Decays At BaBar

Mark Hodgkinson University of Manchester

15 September 2004

Outline

- Motivation for analyses $(\tau \rightarrow lll \text{ and } \tau \rightarrow lhh)$
- The BaBar detector
- Outline of analysis technique
- Results
- Conclusions

- With known υ mixing expect small (~10⁻¹⁴) LFV
- LFV sensitive to Beyond Standard Model physics
- Models allow $B(\tau \rightarrow lll)$ and $B(\tau \rightarrow lhh)$ in range 10⁻²⁰ to 10⁻⁶

Pre B-Factory era measurements at CLEO:

- $B(\tau \rightarrow \mu \neg \mu^+ \mu^-) < 1.9 \times 10^{-6} 90\% \text{ C.L}$
- B($\tau \rightarrow e^+\pi^-\pi^-$)<1.9 × 10⁻⁶ 90% C.L

The BaBar Detector

L decays

• BaBar (at SLAC) has recorded 240 fb⁻¹

• $\tau \rightarrow lll$ (6 modes) uses 91.5 fb⁻¹ and $\tau \rightarrow lhh$ (14 modes) uses 221.4 fb⁻¹. Both use on and off peak data.

• Where $l = e, \mu$ and $h = \pi, K$

Particle Identification (PID)

- For $\tau \rightarrow lll$ events:
- → Electron (E/P, dE/dx, EMC shower shape) efficiency is 91% with hadron mis-ID rate of 2.2%
- → Muon (IFR hits, EMC energy deposits) efficiency of 63% with hadron mis-ID rate of 4.8%
- For $\tau \rightarrow lhh$ events:
- → Electron efficiency is 81% with hadron mis-ID rate of 0.2%
- → Muon efficiency is 44% with mis-ID rate of 1%
- → Pion (dE/dx, θ_c) efficiency is 92% with kaon mis-ID rate of 12%
- → Kaon (dE/dx, θ_c) efficiency is 81% with pion mis-ID rate of 1.4%
- All efficiencies are averaged over momentum spectrum of decay products low momentum track reduces efficiency

- Tag Side: One well identified tagging track t with missing momentum
- Signal Side: Three tracks, identified by PID, with no υ leptons (*l*) or hadrons(*h*)
 - \rightarrow No missing momentum allowed on signal side

SLAC

- Analysis Technique (2)
- Use $\Delta M = M_{rec}$ M_{τ} and $\Delta E = E_{rec(CM)}$ $E_{CM}/2$
- Signal has ΔM , $\Delta E \approx 0$

- ΔM , ΔE plane for
- $\tau \rightarrow \mu ee in MC$
- Signal box is shown in red

- Expect ΔM , ΔE to be smeared by detector and radiative effects
- Signal box is optimised for each channel

Backgrounds

- Tau pair backgrounds at large negative ΔM , ΔE
- $q \bar{q}$ uniformly distributed
- QED is a band at $\Delta E \sim 0$ ($\tau \rightarrow lll$ modes only)

Background Suppression (1)

- Different backgrounds in different channels
- Hence optimise cuts for different channels

Red – signal events, Blue – background events, black points - data

- $P_T(CM) > 100$ MeV/c and one-prong momentum < 4.8 GeV/c suppresses Bhabha and di-muon events
- Lepton veto on one-prong further suppresses Bhabha and di-muon events
- Reject gamma conversions 9

black points - data.

- Theta of missing momentum in range 14 to 137.5 degrees reduces QED backgrounds in lhh modes
- One prong mass > 0.6 GeV (QED) and < 1.9 GeV ($q\bar{q}$, tau pair) in *lhh* modes
- No photons (> 100 MeV) allowed
- No lepton identified as kaon on signal side for all *lll* modes and all *lhh* modes with > 1π 10

- GS is full ΔM , ΔE plane except the SB
- For $\tau \rightarrow lhh$ the QED background is negligible

• PRL 92, 121801 (2004)

	e ⁻ e ⁺ e ⁻	μ⁺e⁻e⁻	μ⁻e⁺e⁻	e⁺µ⁻µ⁻	e⁻µ⁺µ⁻	μ¯μ⁺μ¯
ε(%)	7.3 ± 0.2	11.6 ± 0.4	7.7 ± 0.3	9.8 ± 0.5	6.8 ± 0.4	6.7 ± 0.5
N bgrd	1.51 ± 0.11	0.37 ± 0.08	0.62 ± 0.10	0.21 ± 0.07	0.39 ± 0.08	0.31 ± 0.09
N _{obs}	1	0	1	0	1	0
B _{UL90}	2.0 × 10 ⁻⁷	1.1×10^{-7}	2.7×10^{-7}	1.3×10^{-7}	3.3×10^{-7}	1.9×10^{-7}

	e ⁺ K ⁻ K ⁻	$e^+K^-\pi^-$	$e^+\pi^-\pi^-$	μ ⁺ Κ ⁻ Κ ⁻	$\mu^+ K^- \pi^-$	$\mu^+\pi^-\pi^-$
ε(%)	3.85 ± 0.16	3.19 ± 0.14	3.40 ± 0.15	2.06 ± 0.11	2.85 ± 0.16	3.30 ± 0.18
N bgrd	0.04 ± 0.04	0.16 ± 0.06	0.41 ± 0.10	0.07 ± 0.10	1.54 ± 0.28	1.46 ± 0.23
N _{obs}	0	0	1	1	1	0
B _{UL90}	1.5×10^{-7}	1.8×10^{-7}	2.7×10^{-7}	4.8×10^{-7}	2.2×10^{-7}	0.7×10^{-7}

	e ⁻ K ⁺ K ⁻	$e^{-}K^{+}\pi^{-}$	$e^{-}\pi^{+}K^{-}$	$e^{-}\pi^{+}\pi^{-}$	$\mu^{-}K^{+}K^{-}$	μ⁻K⁺π⁻	$\mu^{-}\pi^{+}K^{-}$	$\mu^{-}\pi^{+}\pi^{-}$
ε(%)	3.77 ± 0.16	3.08 ± 0.13	3.10 ± 0.13	3.30 ± 0.15	2.16 ± 0.12	2.97 ± 0.16	2.87 ± 0.16	3.40 ± 0.19
N bgrd	0.22 ± 0.06	0.32 ± 0.09	0.14 ± 0.06	0.81 ± 0.15	0.24 ± 0.08	1.67 ± 0.32	1.04 ± 0.20	2.99 ± 0.42
N_{obs}	0	0	1	0	0	2	1	3
$B_{_{UL90}}$	1.4×10^{-7}	1.7×10^{-7}	3.2 × 10 ⁻⁷	1.2×10^{-7}	2.5×10^{-7}	3.2×10^{-7}	2.6×10^{-7}	2.9×10^{-7}

B-Factory Era Results

- Belle and BaBar have pushed $\tau \rightarrow lll$ limits to O(10⁻⁷)
- PLB 589, 103 (2004) Belle
- PRL 92, 121801 (2004) BaBar
 →BaBar expected 3.41 background events and found 3
- BaBar has new results on $\tau \rightarrow lhh$ at 10⁻⁷ level • Expected 11.11 background events and found 10
- Other modes eg $\tau \rightarrow \mu \gamma$ at 10⁻⁷ from BaBar/Belle
- Also $\tau \rightarrow e\gamma$, $\tau \rightarrow l\eta$ and $\tau \rightarrow l\pi$ (Belle) at 10⁻⁷ level
- Lots more data to come!

Conclusions

- No signal is found and have set limits O(10⁻⁷) for 20 LFV modes (6 *lll* and 14 preliminary *lhh*)
- Limits have met up with upper end of theoretical predictions \rightarrow Eg SUSY with Higgs Triplet - B($\tau \rightarrow lll$) is 10⁻⁷
- Lots more tau results on the way with 220 fb⁻¹data
- Can probe 10⁻⁸ (SUSY) region with higher statistics