Search for the Lepton Flavor Violating B Decays B°→µ⊤ and B°→e⊤ at CLEO2

J.E.Duboscq Cornell University TAU04, Nara Japan

The Physics: $B \rightarrow \ell \tau$

- We search for the decays B⁰ →µ⊤ and B⁰ →e⊤ in all charge combinations
- This decay is forbidden in the Standard Model with massless neutrinos
- With massive (eV) neutrinos, and mixing, it is still expected to be suppressed
- Observation would indicate interesting new physics

CLEO2 Data and Detector

Data is from CLEO2 \blacksquare 9.6x10⁶ BB from Y(4s) resonance

4.5 /fb 60 MeV below resonance for continuum, 2 photon background

Use Lumi/E² scaling

Use missing momentum cut for 2photon bqd $B \rightarrow \ell T$

Analysis Technique

Search for final states $\mu(e)^+ \tau^-$, $\mu(e)^- \tau^+$ Use τ decay modes: $\tau \rightarrow \mu \nu \nu$ and $\tau \rightarrow e \nu \nu$ Denote modes by (l,l') for $B \rightarrow l\tau, \tau \rightarrow l' \nu \nu$ In B rest frame, primary l is monoenergetic In lab frame, 2.2 GeV < P(l) < 2.5 GeV</p> Secondary l' required to have p(e)> 0.6 GeV or $P(\mu)$ > 1.0 GeV for PID $= P_{\mu}^{\mu}$ is event missing E,P - use E(beam) Use 2 Neural Nets: NN_{BB} and NN_{cont} $B \rightarrow \ell T$

Continuum Suppression

Continuum Suppression NN_{cont} Input: R2 (ratio of 2nd and 0th Fox Wolfram Moments) Input: Event Sphericity Input: Event Thrust Input: cos of angle between p(l)-p(l') and thrust axis of rest of event Input: cos of angle between neutrino pair and lepton pair

Train with Signal and generic Continuum MC

BB Suppression

BB suppression NN_{BB}

Input: Beam Constrained B candidate Mass
Input: Missing Candidate B energy
Input: cos of angle between l and -(momentum of non Candidate B)
Train with Signal and BB generic Monte Carlo

For each mode, accept or reject in Neural Net plane

SideBand Data/MC Check

Use Primary Lepton Sidebands (2.0<p(1)<2.2 GeV, 2.5<p(l)<2.7 GeV) Plot off resonance subtracted Data, B Generic MC ΔM_{τ} is τ mass diff using $P_{\nu\nu}^{\mu}$ $\Delta M_{\tau, \Delta E=0}$ is beam constrained τ mass diff Good Match JED Tau04

Spectra from Primary Lepton Sideband regions (µ,e) mode

```
B \rightarrow \ell \tau
```

7

SideBand Data/MC Check 2

Use Primary Lepton Sidebands (2.0<p(1)<2.2 GeV, 2.5<p(1)<2.7 GeV)

Plot off resonance Data, Continuum Generic MC

In (e,e) mode data exceeds MC: 2 γ bgd Scale MC in signal region by this ratio Small error because we do onoff data substraction

Spectra from Primary Lepton Sideband regions (µ,e) mode

JED Tau04

Results

 Subtract (scaled) Off Resonance Data from On Resonance Data, after cuts

 Compare to N(BB), N(Cont) scaled according to primary sideband estimation

The rest would be signal

(, ')	(µ,e)	(μ,μ)	(e,e)	(e,µ)
N(on)	19	10	28	6
N(off)	2	3	7	0
N(obs)	15.0±5.2	4.0±4.7	14.0±7.5	6.0 <u>±</u> 2.4
<nbb></nbb>	23.7±2.7	9.0±1.4	11.6±1.4	5.1±0.8
<ncont></ncont>	1.8±0.6	0.4±0.2	3.1±1.0	0.5±0.3

Results 2

Dominant Systematics:
Lepton ID (3.5% for each lepton)
P_{νν}^μ uncertainties (5.4%)
Allow MC Scaling to vary by 1σ in least favorable direction for UL
Limits including Systematics

(l,l')	(µ,e)	(μ,μ)	(e,e)	(e,µ)
BR 90% UL (10 ⁻⁴)	0.55	0.87	1.64	1.46

Conclusions

Combining Modes gives: $B(B \rightarrow \mu \tau)$ < 3.8×10⁻⁵ @ 90%CL Submitted to PRL ■ $B(B \rightarrow e\tau) < 1.1 \times 10^{-4} @ 90\% CL$ Limits are a factor of 22(5) better than previous lowest, also by CLEO Results given are for unpolarized T For V-A \in -> \in +11% For V+A ϵ -> ϵ -8%