

Stewart Smith Princeton University for the BABAR Collaboration

B Physics and CP Ise-Shima, Japan February 19, 2001

Introduction

- Summary of PEP-II/BaBar performance
- Basics of measuring CP violation at an asymmetric B Factory
- Details of the data sample and analysis
- Extracting sin 2β
- Cross-checks and error analysis
- Looking to the future
- Conclusion

Year 2000/01 Operations

2000/10/27 11.25

- Running began Jan 2000
 - ~24 fb⁻¹ total by Oct 31
 - → ~21 fb⁻¹ Y(4S);
 - ~3 fb⁻¹ continuum

Shutdown Nov1 – Feb1

- PEPII improvements
- BaBar repair/maintenance
- Computing development for 5 x 10³³

2001 Run is underway

- Began 3 Feb
- 1.5 10³³ As of 15 Feb
- Expect ~40 fb⁻¹ in CY '01

Operations ...

By end of 2000 run, peak & <u>average</u> luminosity were above design and climbing:

BABAR Detector

BCP4 Ise-Shima, Japan

$B^{0-}\overline{B^{0}}$ Mixing and CP

Neutral *B* and \overline{B} mix into mass eigenstates, oscillating at a frequency determined by Δm_B <u>Concezio Bozzi talks on</u> <u>BaBar mixing results at 0900 Thur.</u> $\frac{q}{p} = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{2i\phi_M}$

• We define
$$\lambda = \frac{q}{p} \frac{A}{A}$$
, where

For a single decay amplitude with weak phase ${{oldsymbol{ / } \mathcal{O}}}_D$

$$\operatorname{Im} \lambda = \sin 2(\phi_{M}, \phi_D)$$

Leads to CP-violating asymmetries interpretable by the Standard model

February 19, 2001

 $\overline{A} = \langle f \mid H \mid \overline{B^{0}} \rangle$ $A = \langle f \mid H \mid B^{0} \rangle$

phases α , β , and γ via– "no" hadronic uncertainties

CP physics at the $\Upsilon(4S)$

- The $\Upsilon(4S)$ decays into a *P*-wave $B^0\overline{B}^0$ state that evolves coherently till one of the *B*'s decays. The *B*'s are almost motionless in the $\Upsilon(4S)$ rest frame.
- We measure the interference between direct and mixed decays to a CP eigenstate

Decay-time Distributions

• For
$$b \to (c \overline{c}) s$$
 $|\lambda|=1$ and $\operatorname{Im} \lambda = -\eta_f sin 2\beta$
 $\beta = arg [V_{cd}V_{cb}*/V_{td}V_{tb}*]$

We reconstruct the "gold / silver"CP eigenstates:

$$\begin{array}{ll} J/\psi \, K^{0}{}_{S}, \ \psi \, (2s) K^{0}{}_{S} & (\eta_{f} = -1) \\ J/\psi \, K^{0}{}_{L} & (\eta_{f} = +1) \end{array}$$

• t-dependent $A_{CP}(\Delta t) = \frac{f_+(\Delta t) - f_-(\Delta t)}{f_+(\Delta t) + f_-(\Delta t)}$ asymmetries: $= -\eta_f \sin 2\beta \sin (\Delta m_{B^0} \Delta t)$

 $\int A_{CP} dt = 0 \implies \text{Asymmetric } B \text{ Factory}!$

Overview of the Analysis

Fully reconstruct exclusive *B* decays to eigenstates of *CP* or flavour, and tag flavour of the other *B* in the event.

- Select B_{CP} candidates ($B^0 \rightarrow J/\psi K_s$, etc.) and B_{flav} candidates ($B^0 \rightarrow D^* +, etc.$)
- Select B_{tag} events using, primarily, leptons and K's from B hadronic decays, and determine the B flavour.
- Measure the mistag fractions w_i and determine the dilutions $D_i = 1 2w_i$
- Measure ΔZ between B_{CP} and B_{tag} to determine the signed time difference Δt between the decays
- Determine the resolution function for Δt

Crucial Elements in $A(\Delta t)$ measurement: I. Vertex Resolution

Even at PEP-II, *B*'s don't go very far! ($\approx 250 \ \mu$ m) $\Rightarrow 5 \text{ Layer Silicon Vertex Tracker}$

Crucial Elements in A(∆t) measurement: II. Particle ID and Tagging

- J/ψ 's are detected by their *ee* and $\mu\mu$ modes
- K_L modes are an important contributor to CP sample. K_L's are detected by their strong interaction debris in EMC and IFR
- The flavour of the tagging B decay is determined from its lepton and kaon content, and from slow pions from D*'s

Particle ID: Electrons

- Track matching in the EMC
- 0.89 < E/P < 1.2
- EM shower shape requirements
- DCH d*E*/d*x* consistent with electron hypothesis
- Efficiency and π misID probabilities determined from the data (Control Samples)
- Typical Tight Electron selection: ~92% efficiency above 500 MeV, with 0.1% π misID

Particle ID: Muons

•Cut on # interaction lengths and difference from that expected for

a μ track

• IFR hit pattern rejects hadron showers

consistent with a MIP in the EMC

• Typical Tight Muon selection: ~75% efficiency above 1.5 GeV, with ~3% pion mis ID

BCP4 Ise-Shima, Japan

An Event from the CP Sample

A candidate in the Golden Mode

$$B^{0}_{CP} \rightarrow J/\psi K^{0}_{S}, \quad K^{0}_{S} \rightarrow \pi^{+}\pi^{-}$$

with: $J/\psi \rightarrow \mu^{+}\mu^{-}$

• A negative kaon is found in the decay products of the other **B** meson, which is therefore tagged as a B^0 • Δz is measured precisely, thanks to the Silicon Vertex Detector

Reconstructed Hadronic B events for mixing and fitting (B_{flav} Sample)

 $B^0 \rightarrow J/\psi (K_s \rightarrow \pi^0 \pi^0)$

BCP4 Ise-Shima, Japan

Final CP **sample of** κ^0_s **modes**

$B^0 \rightarrow J/\psi K^0_L$ events in CY 2000 sample

- K_L^0 signaled by isolated clusters in IFR (>1 layer) and/or EMC (>200 MeV)
- K^{0}_{L} direction is combined with J/ψ momentum to reconstruct K^{0}_{L} energy
- ~ 205 total events above large background before tagging. Background shape, amount, and *CP* structure studied with Monte Carlo. (182 after tagging)

Likelihood analysis – global fit

- Simultaneous fit to B_{CP} and B_{flav} samples for $\sin 2\beta$ (plus 34 parameters to characterize the detector and the data)
 - Signal Δt resolution function (9 parameters)
 - Signal dilutions and $B^{0} \overline{B}^{0}$ dilution differences (8 parameters)
 - Background Δt structure, resolution function, dilutions and *CP* content (17 parameters)
- Correlations between B_{CP} and B_{flav} are small
- Extract background parameters from:
 - $m_{\rm ES}$ sidebands for golden *CP* modes and $B_{\rm flav}$ modes
 - J/ψ sidebands and inclusive $B^0 \rightarrow J/\psi$ monte carlo for K^0_L modes

Mistag fractions w_i and effective efficiencies Q_i

- Determined from data via likelihood fit
- $Q_i = \varepsilon_i (1 2W_i)^2$ is the effective tagging efficiency

Tag Category	arepsilon(%)	w(%)	Q(%)
Lepton	10.9 ± 0.4	11.6 ± 2.0	6.4 ± 0.7
Kaon	36.5 ± 0.7	17.1 ± 1.3	15.8 ± 1.3
NT1	7.7 ± 0.4	21.2 ± 2.9	2.6 ± 0.5
NT2	13.7 ± 0.5	31.7 ± 2.6	1.8 ± 0.5
Total	68.9 ± 1.0		26.7 ± 1.6

Time (Δt) resolution function

- Sum of three Gaussians: Core (88%), Tail (11%), and Outliers (1%)
- Parameters determined from likelihood fit and other consistency checks

$$\begin{aligned} \mathcal{R}_{\text{reso}}(\Delta t, \Delta t_{\text{true}}, \sigma_{\Delta t} | f_{\text{tail}}, f_{\text{outlier}}, S_{\text{core}}, \delta_{\text{core}}, S_{\text{tail}}, \delta_{\text{tail}}, \sigma_{\text{outlier}}) \\ &= (1 - f_{\text{tail}} - f_{\text{outlier}}) \frac{\exp{-\frac{1}{2} \left(\frac{\Delta t - \delta_{\text{core}} - \Delta t_{\text{true}}}{S_{\text{core}} \sigma_{\Delta t}}\right)^2}}{\sqrt{2\pi} S_{\text{core}} \sigma_{\Delta t}} \\ &+ f_{\text{tail}} \frac{\exp{-\frac{1}{2} \left(\frac{\Delta t - \delta_{\text{tail}} - \Delta t_{\text{true}}}{S_{\text{tail}} \sigma_{\Delta t}}\right)^2}}{\sqrt{2\pi} S_{\text{tail}} \sigma_{\Delta t}} \\ &+ f_{\text{outlier}} \frac{\exp{-\frac{1}{2} \left(\frac{\Delta t - \delta_{\text{outlier}} - \Delta t_{\text{true}}}{\sigma_{\text{outlier}}}\right)^2}}{\sqrt{2\pi} \sigma_{\text{outlier}}} \end{aligned}$$

BCP4 Ise-Shima, Japan

Cross checks on mistag fractions

$B^0 \rightarrow D^{*-} l v$	B _{flav} sample
16,000 events	~5000 events

Parameter	one bin	One bin hadronic	Global likelihood fit
w [Lepton]	0.108 ± 0.013	0.116 ± 0.021	0.116 ± 0.020
w [Kaon]	0.180 ± 0.009	0.176 ± 0.014	0.171 ± 0.013
w [NT 1]	0.216 ± 0.019	0.197 ± 0.030	0.212 ± 0.029
w [NT2]	0.364 ± 0.016	0.323±0.027	0.317 ± 0.026
Q	0.255 ± 0.017	0.264 ± 0.018	0.267 ± 0.017

∆t distributions and oscillations for tagged <u>hadronic</u> *B* decays

Breakdown of tagged CP events

DECAY MODE

r	Tag	$J\!/\psi K^0_{_S} \left(\pi^+\pi^- ight)$		$J\!/\psi K^0_{S} \; (\pi^0\pi^0)$		$\psi(2S)K_S^0$			Total				
A		B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot
G	e + K	2	0	2	0	0	0	1	0	1	3	0	3
	$\mu + K$	1	0	1	0	1	1	2	0	2	3	1	4
N	e	5	5	10	1	1	2	1	2	3	7	8	15
	μ	3	6	9	0	0	0	2	1	3	5	$\overline{7}$	12
	Lepton	11	11	22	1	2	3	6	3	9	18	16	34
с Г	Kaon	54	54	108	14	11	25	12	11	23	80	76	156
E	NT1	10	12	22	1	1	2	2	2	4	13	15	28
G D	NT2	18	18	36	8	3	11	4	4	8	30	25	55
२	Total tag	93	95	188	24	17	41	24	20	44	141	132	273
Y	No tag		76			20			13			109	
	Tag ε (%)		71 ± 3	3		67 ± 6	i i		77±0	6		71 ± 2	

Breakdown (cont'd)

DECAY MODE

	Tag	CP =1 modes		$J\!/\psiK^0_{\scriptscriptstyle L}$			Total				
т		B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot	B^0	$\overline{B}{}^{0}$	Tot	
A	e + K	3	0	3	1	6	7	4	6	10	
G	$\mu + K$	3	1	4	3	5	8	6	6	12	
ĩ	e	7	8	15	11	8	19	18	16	34	
N G	μ	5	$\overline{7}$	12	5	6	11	10	13	23	
	Lepton	18	16	34	20	25	45	38	41	79	
C A	Kaon	80	76	156	70	60	130	150	136	286	
T	NT1	13	15	28	16	6	22	29	21	50	
E G	NT2	30	25	55	32	27	59	62	52	114	
0	Total tag	141	132	273	138	118	256	279	250	529	
K Y	No tag		109			130			239		
	Tag ε (%)	71 ± 2			$66{\pm}2$			69 ± 2			

February 19, 2001

$\mathbf{A}(\Delta t)$

$A(\Delta t) VS \Delta t$ (Binomial Errors)

(MC study shows 60% prob. of obtaining worse fit.)

February 19, 2001

BCP4 Ise-Shima, Japan

$sin2\beta$ for various parts of *CP* sample; crosschecks from B_{flav} and charged *B*'s

Systematic Effects

Systematic	$J\!/\!\psi K^0_S, \psi(2S) K^0_S$	$J\!/\psiK_L^0$	Full sample
Δt determination	0.04	0.04	0.04
$J/\psi K_S^0, \psi(2S)K_S^0$ back.	0.02		0.02
$J/\psi K_L^0$ back.		0.09	0.01
$J/\psi K_L^0$ Sig. fraction		0.10	0.01
$ au_{B^0}$	0.01	0.01	< 0.01
Δm_{B^0}	0.01	< 0.01	0.01
Other	0.01	0.01	0.01
Total	0.05	0.14	0.05

BCP4 Ise-Shima, Japan

40

BCP4 Ise-Shima, Japan

BCP4 Ise-Shima, Japan

43

Conclusions

- PEP-II and BaBar are operating at or above design luminosity, and have dealt with ~25 fb⁻¹ in 2000
- The detector is performing as designed, and the analysis teams are in full operation
- We have have made the most precise measurement to date of $sin 2\beta$, and many other analyses are underway
- We expect to more than double our data by the end of the run in August, and reduce the systematic effects to take full advantage of it.
- By 2005, we should accumulate ~ 500 fb^{-1}
 - Measure sin 2α , compare sin 2β in individual modes
 - Make serious measurements of direct *CP* violation and rare decays.