Strategies For The Determination of ϕ_3 (γ) In $B^- \rightarrow DK^-$

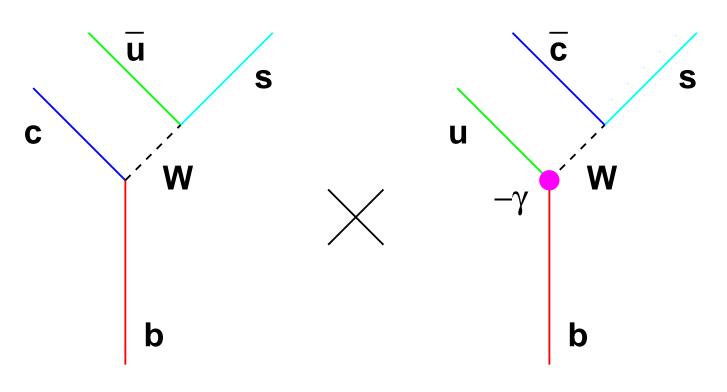
David Atwood BCP4 February 19, 2001

Outline

- What are we Measuring?
- The Basic Idea
- Methods to Extract γ : How well can we do?
 - A Single Two Body Mode
 - Two or More Two Body Modes
 - $-\,A$ Single Three Body Mode
- Impact of $D\overline{D}$ oscillations.
- Conclusions

What are We Measuring?

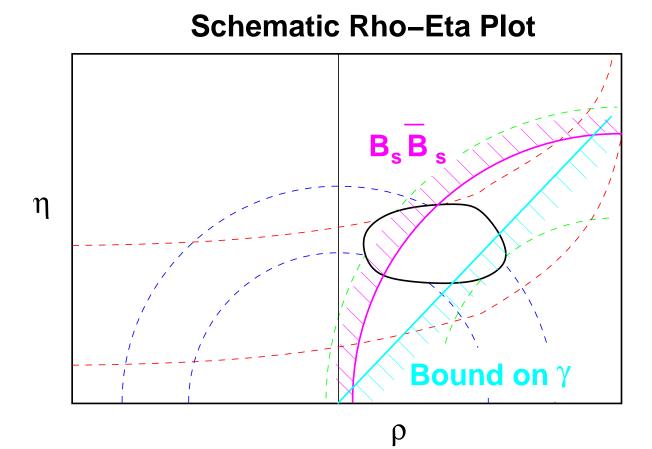
- We want to measure the CP odd phase difference between between $b \to \overline{u}cs$ and $b \to u\overline{c}s$.
- In the standard model, this phase is γ .
- For interference to occur:
 - Some trick must be used to match the initial and final states.
 - There must be a strong phase difference to produce manifest CP violation.



 \bullet CP violation implies lower bound on γ

Why is γ Important?

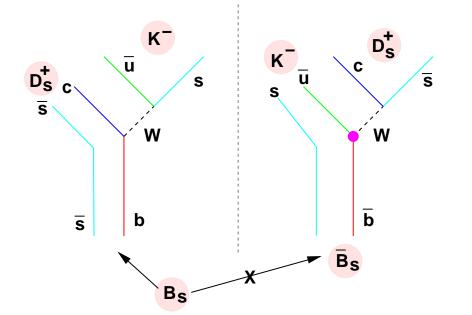
- Confirm or refute the standard model: The Standard Model predicts that all the CKM phases and magnitudes fit consistently into an unitary matrix. If this fails, the Standard Model with three generations must be extended.
- Observed CP violation will imply a lower bound on γ .
- Within the unitary triangle picture a **lower bound** on γ will be complimentary to the information from B_s oscillations.

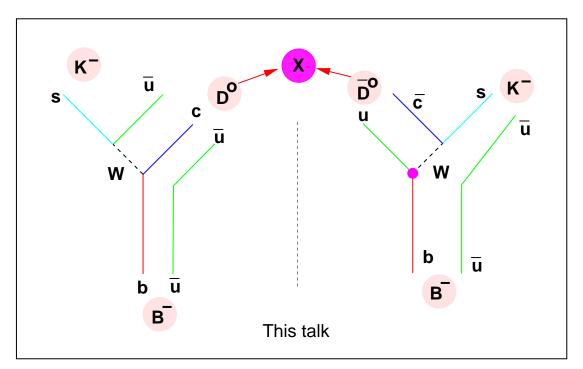


The Basic Idea

- We need to dress up final and/or initial states to allow interference.
- There are two possible ways to do this
 - 1. $B_s/\overline{B}_s \to D_s^+K^-$: Here B_s oscillation does the job.
 - 2. $B^- \to D^0/\overline{D}^0 K^-$: Interference will occur if a common D^0 , \overline{D}^0 final state is observed (eg. $\pi^+\pi^-$). (**This talk**)

[Gronau, London, Wyler 91; DA Dunietz Soni 97]



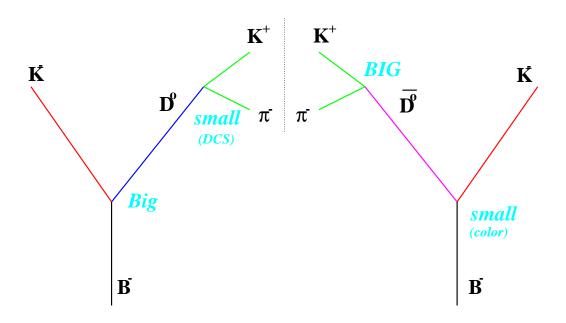


Common Final States

- In principle, any hadronic state is common to D^0 and \overline{D}^0 .
- Each strategy to determine γ , needs overcome the following difficulties:
 - 1. $B^- \to D^0 K^-$ is about 100× bigger than $B^- \to \overline{D}^0 K^-$
 - 2. It is probably not possible to measure $Br(B^-\to \overline{D}^0 K^-)$ independently.
- In all cases, one has to worry about the possibility of $D^0\overline{D}^0$ oscillations.

Why can't we measure $\operatorname{Br}(B^- \to \overline{D}^0 K^-)$?

• If the \overline{D}^0 decays hadronically, it will interfere quantum mechanically with the same decay mode of the D^0 . (impossible)



• If the \overline{D}^0 decays semi-leptonically, it is subject to a $O(10^5)$ background from the direct semileptonic decay of the parent B^- to the same sign lepton. (difficult)

$$B^- \to K^-[\overline{D}^0 \to e^- \overline{\nu}_e + X]$$

versus

 $B^- \to e^- \overline{\nu}_e + X$

Methods to Extract γ

- In this section, I will discuss the extraction of γ by using the following types of D^0/\overline{D}^0 decay modes:
 - 1. D^0/\overline{D}^0 to a single two body mode.
 - 2. D^0/\overline{D}^0 to two or more two body modes.
 - 3. D^0/\overline{D}^0 to a single three body final state.

D^0/\overline{D}^0 To A Single Two Body Mode.

- If only one D^0/\overline{D}^0 decay modes is observed, there is not enough information to determine γ , however if there is large CP violation, a restrictive lower bound may be placed on $\sin^2 \gamma$.
- To enhance CP violation, it is best to consider states where $D^0 \to X$ is DCS and $\overline{D}^0 \to X$ is CA.

[DA Dunietz Soni 1997, 2000]

• In this case, the two channels have roughly equal magnitude giving potentially large CP asymmetries.

- The free parameters of the system are:
 - 1. γ , the total weak phase difference.
 - 2. $\boldsymbol{\xi}$ the total strong phase difference.
 - 3. The Branching ratio $a = Br(B^- \to K^- D^0)$.
 - 4. The branching ratio: $b = Br(B^- \to K^- \overline{D}^0)$.
 - 5. The branching Ratio $c = Br(D^0 \to X)$

6.
$$\overline{c} = Br(\overline{D}^0 \to X)$$

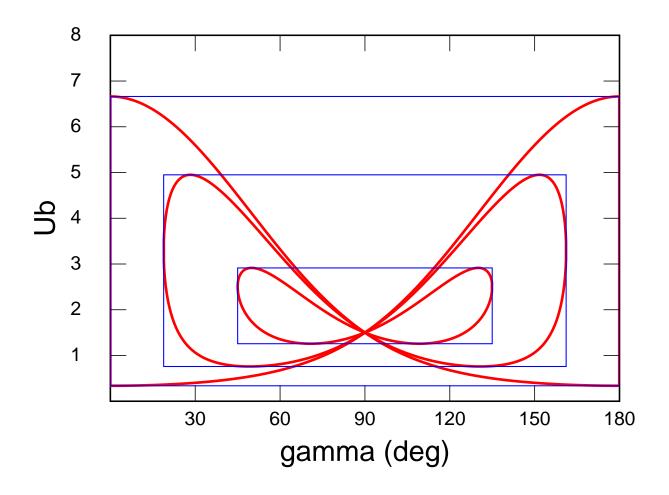
- 7. The total rates $d = Br(B^- \to K^-[X])$ and $\overline{d} = Br(B^+ \to K^+[\overline{X}])$
- In addition d and d are each functions of {γ, ξ, a, b, c, c} so there are two equations in 3 unknowns
 → one parameter to nail down.
- Thus, given a set of observations, b is a function of γ (in fact $\sin^2 \gamma$)

$$U^{2}b^{2}\sin^{2}\gamma - 2Ub(z + 2\cos^{2}\gamma)\sin^{2}\gamma + z^{2}\sin^{2}\gamma + y^{2}\cos^{2}\gamma = 0$$

$$U = (\overline{c}/ac); \qquad z = (d + \overline{d})/(2ac) - 1; \qquad y = (d - \overline{d})/(2ac).$$

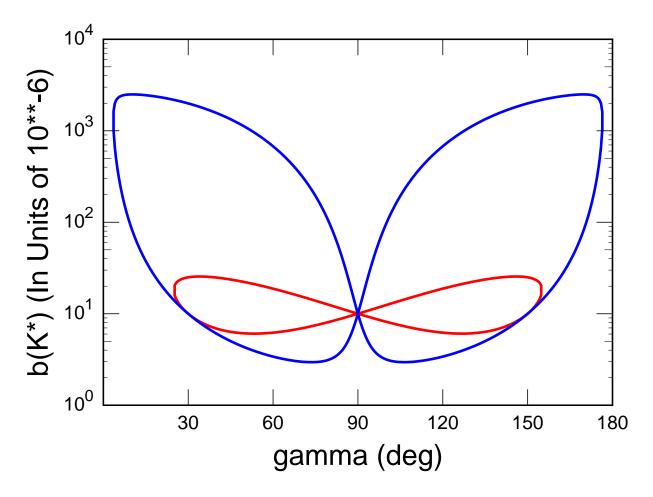
• Larger CP violation results in a more restrictive lower bound on $\sin^2 \gamma$ and more restrictive bounds on b:

$$\sin^2 \gamma \ge \frac{1}{2}(1+z)(1-\sqrt{1-(y/(1+z))^2})$$
$$(1-\sqrt{z+|y|+1})^2 \le u \le (1+\sqrt{z-|y|+1})^2$$



• Here z = 1.5 while y = 0, 1, 1.5.

• Note that for a given value of b, the two angular branches are the strong phase and the weak phase.



• Numerical estimate for $B^- \to K^{*-}[D^0 \to X]$

- Red is for $X = K^+ \pi^-$
- Blue is for $X = K_s \pi^0$

• Assuming:

$$-a(K^*) = 6.6 \times 10^{-4};$$

$$-b(K^*) = 1.0 \times 10^{-5}$$

$$-\gamma = 90^{\circ}; \xi = 30^{\circ} \text{ for both modes.}$$

$$- \text{ Thus } d = 3 \times 10^{-7}; \overline{d} = 8.5 \times 10^{-7}$$

$$- \alpha_{CP}(K^+\pi^-) = 0.47 \quad \alpha_{CP}(K_s\pi^0) = 0.12$$

• In the above example, if $N_B/(acceptance) = 10^8$, then the 95% cl bound on γ is about 10° below the ideal bound.

ξ°	γ°	$\gamma_{min} (95\% \text{ cl})$	γ_{min}
30	30	1.1	9.0
30	60	6.5	17.5
30	90	13.6	25.0
60	60	23.1	35.3
60	90	38.0	52.8
90	90	55.5	90

Possible methods to get around b

- Use many modes and take the best lower bound (see also 3 body case to follow)
- Use a model to estimate a range in b
- Check an analogous decay where cross channel interference is smaller: $\overline{B}^0 \to K^*[\overline{D}^0 \to K^+\pi^-];$ $\Lambda_b \to \Lambda[\overline{D}^0 \to K^+\pi^-]$ where the cross channel interference should only be ~ 30%: can bound b to a possibly useful range.
- Use a two or more of quasi-two body modes simultaneously \rightarrow see next.

Two or More Two Body Modes

- The data from two different modes will in general intersect in 4 points in the γb plane.
- Three or more modes will, in general, intersect only at the correct point — the strong phases can be read off of the other branches of the curves.
- For a sample calculation I will feed in the following randomly selected strong phases:

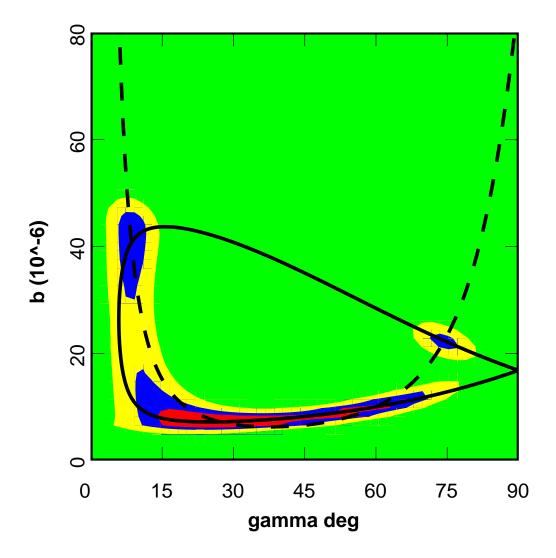
	$D = 0.0 \times 10$ 0($(K_{\rm o}) = 1.0 \times 10^{-4}$
Mode	$Br(D^0 \to \text{final state})$	$Br(\overline{D}^0 \to \text{final state})$
$K^+\pi^-$	$(2.9 \pm 1.4) \times 10^{-4}$	3.83×10^{-2}
$K^+\rho^-$	$3.8 imes 10^{-4}$	$10.8 imes 10^{-2}$
$K^{+}a_{1}^{-}$	$7.0 imes 10^{-5}$	$7.3 imes 10^{-2}$
$K^{*+}\pi^-$	$8.3 imes 10^{-4}$	$5.0 imes 10^{-2}$

 $a(K^*) = 6.6 \times 10^{-4}$ $b(K^*) = 1.0 \times 10^{-5}$

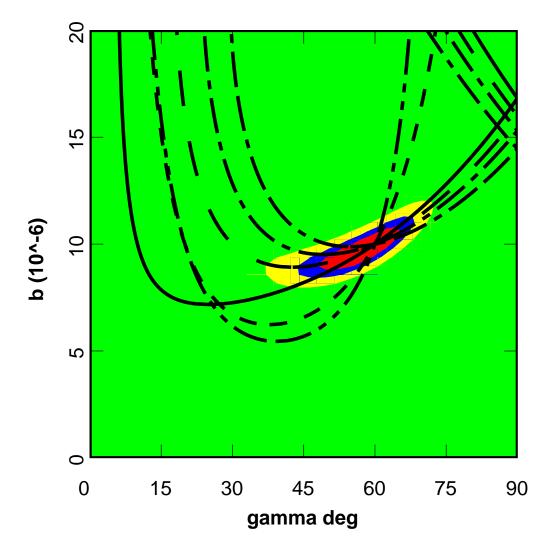
Branching ratios in units of 10^{-8}

Mode	d_i	$\overline{d_i}$	$\frac{1}{2}(d_i + \overline{d_i})$	lpha'	ξ_i			
$K^+\pi^-$	91	75	83	0.096	10			
$K_s \pi^0$	842	740	791	0.064	20			
$K^+\rho^-$	289	159	224	0.288	30			
$K^{+}a_{1}^{-}$	203	90	146	0.383	40			
$K_s ho^0$	333	391	362	0.081	200			
$K^{*+}\pi^-$	97	34	65	0.477	50			

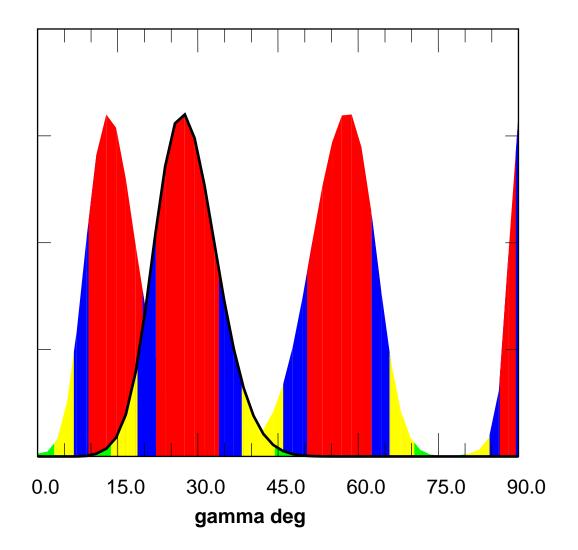
- Just two modes used:
 - $-K^+\pi^-$ (solid)
 - $-K_s\pi^0$ (short dashes)
- Confidence regions assuming that $N_B/acceptance = 10^8$: 99%; 90%; 68%



- All the modes used:
- $K^+\pi^-$ (solid) $K_s\pi^0$ (short dashes) $K^+\rho^-$ (long dashes) $K^+a_1^-$ (dash-dot) $K_s\rho^0$ (dash-dot-dot) $K^{*+}\pi^-$ (dash-dash-dot)
- Confidence regions assuming that $N_B/acceptance = 10^8$: 99%; 90%; 68%



- Projecting the normalized likelihood distribution onto the γ axis in the cases where $\gamma = 15^{\circ}$; 30° ; 60° and 90° .
- Confidence regions assuming that $N_B/acceptance = 10^8$: 99%; 90%; 68%



What States Can be Used?

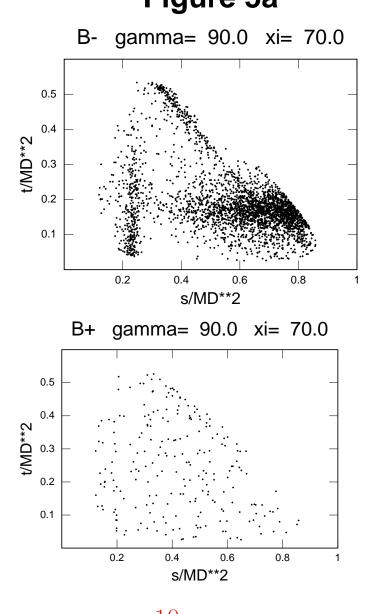
- \bullet One can change D^0 to any excited D^{0*} state
- One can change K^{-*} to any excited K^{-*} state
- The same analysis applies if there is only one amplitude.
- If there are multiple amplitudes (D^*K^*) one can consider angular momentum analysis of the decay. [Sinha and Sinha 98]
- Each combo must be placed on a separate γb plot.
- If you assume that $Br(B^- \to \overline{D}^0 K^{*-}) = Br(\overline{B}^0 \to \overline{D}^0 K^{*0})$ then we can also include B^0 decays on the same γb plot. [DA in progress]
- Likewise, given $Br(\Lambda_b \to \Lambda K^-) = Br(B^- \to \overline{D}^0 K^-)$ then we can also include Λ_b decays on the same γb plot.
- Phase information from a charm factory could also be used to provide additional constraints to a global fit.
 [Soffer 98]

A Single Three Body Final States

- Many of the quasi-two body states are channels in the same three body final state, for instance: $D^0 \rightarrow K^{*0}\pi^0$; $K^{*+}\pi^-$; $K^+\rho^-$; $\rightarrow K^+\pi^-\pi^0$
- Each point in the Dalitz plot may be thought as a separate "mode" so in principle, such a system offers an infinitude of "modes" so there is enough information in such a final state to determine both γ and b.

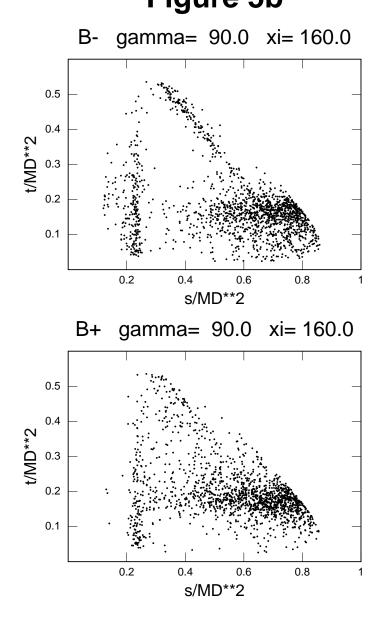
[DA Dunietz Soni 2000]

- To extract the amplitude, one can fit the distribution to a resonance channel model.
- We can also construct the lower bound on $\sin^2 \gamma$ for each point on the Dalitz plot.
- Generally, the lest lower bound is exactly $\sin^2 \gamma$.
- The same is true for both lower and upper bounds on *b*.
- Let us define f(q) as the fraction of the dalitz plot where the bound on $\sin^2 \gamma$ is better than q.
- Using the phenomenological model from E687 for the CA decay and SU(3) for the DCS decay ...

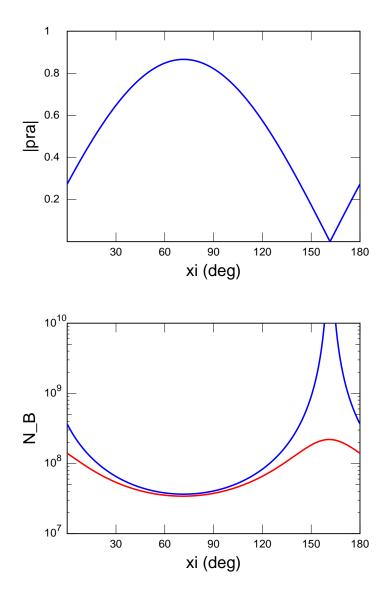


With $10^{10}/acceptance B's!!!!$ $s = (p_{\pi^-} + p_{K^+})^2$ and $t = (p_{\pi^0} + p_{\pi^-})^2$

• Large partial rate asymmetry

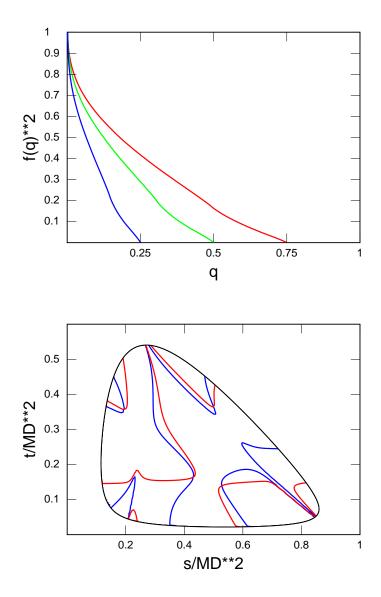


• Little partial rate asymmetry but difference in distribution



But what do you really need?

- Blue curve: $N_B^{3\sigma}$ to see CP violation using only PRA.
- Red curve: $N_B^{3\sigma}$ to see CP violation using the differences in distribution.



• f(q) is the proportion of the Dalitz plot with $\sin^2 \gamma > q$. Curves for $\sin^2 \gamma = 0.25$; 0.5; 0.75.

The Impact of $D\overline{D}$ Oscillation

- It has been suggested that resonant effects can give a SM value of $y_D \sim .01$ while physics beyond the SM could give $x_D \sim .01$ [M Gronau 99; H Nelson 99]
- Consider $B^- \to K^-[D^0 \to K^+\pi^-]$ where the last step is DCS. If there is O(1%) chance of the D^0 oscillating to a \overline{D}^0 , the CA decay $\overline{D}^0 \to K^+\pi^-$ will be comparable and disrupt the above analysis.
- To analyze the expected magnitude of mixing effects in this system, let us introduce an expansion parameter $\mu^2 = b/a$.
- Then, numerically $c/\overline{c} = O(\mu^2)$ and if mixing is near its maximum expected value, then $x_D = O(\mu^2)$ or $y_D = O(\mu^2)$ and $\mu \sim 0.1$.
- In this regime it is valid to approximate:

$$d(\tau) = (d_0 + d_1\tau)e^{-\tau}; \quad \overline{d}(\tau) = (\overline{d}_0 + \overline{d}_1\tau)e^{-\tau};$$

Where $\tau = \Gamma_D t$ and d_0 and \overline{d}_0 are the decay rates that would obtain absent mixing.

• Using the expansion in terms of μ , d_1/d_0 and $\overline{d}_1/\overline{d}_0$ are $O(\mu)$ thus mixing effects are expected to be ~ 10%.

- Three ways to deal with mixing are:
 - 1. Determine the mixing parameters elsewhere and fold them into the analysis.
 - If the mixing parameters were known, the determination of $\{d_0, \overline{d}_0 \ d_1, \overline{d}_1\}$ would give enough information to extract γ and b.
 - This is likely to be practical only if the mixing is very large.
 - 2. Include the possible mixing as a systematic error in your final result.

[Soffer and Silva 2000]

- An analysis of how the error propagates through estimates that a mixing bound of $x_D, y_D < .01$ will result in a systematic error in γ of about 10° 3. Use time dependent information to eliminate contamination due to mixing.

[DA Dunietz Soni 2000]

- If time dependent information is available, one can reduce to the unmixed case by convoluting the data with the weighting function $w = 2 - \tau$:

$$d_0 = \int_0^\infty d(\tau) \ w \ d\tau \quad \overline{d}_0 = \int_0^\infty \overline{d}(\tau) \ w \ d\tau$$

– The statistical cost of this approach is:

$$N_{mixing} = 2(1 + \sigma^2)(1 + d_1/d_0)^2 N_{no\ mixing}$$

 $-\sigma$ is the (detector time resolution) $\cdot \Gamma_D$.

 $-N_{mixing}$ is the number of B's required if mixing might be present, $N_{no\ mixing}$ would be the number of B's required if mixing is known to be absent.

Conclusions

- Decays of the form $B^- \to D^0 K^-$ allow the opportunity to measure γ through the interference of $b \to c$ and $b \to u$ transitions.
- All DCS decay modes of the D^0 should be checked for CP violation. If any are found, a bound on γ may be established.
- Data from at least three modes can be used to determine γ but as many modes as possible should be used.
- Three body modes contain additional phase information; potentially one mode alone could be used.
- Respectable measurements of γ may happen if $N_B/(accept)\sim 10^8$
- The potential for large (1%) DD̄ oscillations introduces about O(10°) systematic uncertainty in γ. Time dependent information can eliminate this at the cost of a factor of ~ 2 in statistic.