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What are We Measuring?

e We want to measure the CP odd phase difference
between between b — wcs and b — ucs.

e In the standard model, this phase is 7.
e For interference to occur:

— Some trick must be used to match the initial
and final states.

— There must be a strong phase difference to
produce manifest CP violation.
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e CP violation implies lower bound on ~



Why is v Important?

e Confirm or refute the standard model:
The Standard Model predicts that all the
CKM phases and magnitudes fit consis-
tently into an unitary matrix. If this fails,
the Standard Model with three genera-
tlons must be extended.

e Observed CP violation will imply a lower
bound on ~.

e Within the unitary triangle picture a lower
bound on v will be complimentary to
the information from Bgs oscillations.



Schematic Rho—-Eta Plot




The Basic Idea

e We need to dress up final and/or initial states to
allow interference.

e There are two possible ways to do this
1. By/Bs, — DIK~: Here By oscillation does
the job.

2. B~ — DY /EOK ~: Interference will occur if

a common D° D" final state is observed (eg.
ntr). (**This talk™*)

[Gronau, London, Wyler 91; DA Dunietz Soni 97|
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Common Final States

e In principle, any hadronic state is common to D"
and D".

e [lach strategy to determine -, needs overcome the
following difficulties:

1. B~ — DYK~ isabout 100 x bigger than B~ —
DK~

2. It is probably not possible to measure Br(B~ —
DK ™) independently.

e In all cases, one has to worry about the possibility
of DD oscillations.



Why can’t we measure Br(B~ — DK ~)?

o If the D' decays hadronically, it will interfere
quantum mechanically with the same decay mode

of the DY, (impossible)

B B

o If the D’ decays semi-leptonically, it is subject
to a O(10°) background from the direct semi-
leptonic decay of the parent B~ to the same sign
lepton. (difficult)

B~ - K [D’—ev, +X]
Versus

BT —erv,+X



Methods to Extract «

e In this section, I will discuss the extraction of v by
using the following types of D"/ D’ decay modes:

1. D°/D’ to a single two body mode.
2. D°/D" to two or more two body modes.
3. D°/D" to a single three body final state.



DO/FO To A Single Two Body Mode.

e If only one DY/ D’ decay modes is observed, there
is not enough information to determine vy, how-
ever if there is large CP violation, a restrictive
lower bound may be placed on sin® .

e To enhance CP violation, it is best to consider
states where D — X is DCS and D’ — X is
CA.

[DA Dunietz Soni 1997, 2000]

e In this case, the two channels have roughly equal
magnitude giving potentially large CP asymme-
tries.



e The free parameters of the system are:

1. 7y, the total weak phase difference.

. & the total strong phase difference.

. The Branching ratio a = Br(B~ — K~DV).

. The branching ratio: b = Br(B~ — K~ D").

. The branching Ratio ¢ = Br(D" — X)

¢=Br(D" - X)

. The total rates d = Br(B~ — K~[X]) and
d= Br(Bt — K1[X])

-~ O Ot = W o

e In addition d and d are each functions of {~, £, a,
b, ¢, ¢} so there are two equations in 3 unknowns

— one parameter to nail down.

e Thus, given a set of observations, b is a function
of v (in fact sin”~)

U?b? sin? y — 2Ub(z + 2 cos® ) sin® y + 2% sin® y + y? cos> y = 0
U= (¢/ac); z=(d+d)/(2ac)—1; y=(d—d)/(2ac).
e Larger CP violation results in a more restrictive

lower bound on sin? v and more restrictive bounds
on b:

SinzfyZ; 2)(1— 1= (y/(1+2))?)
(1= z+ |y +1)?<u<(1+/z— |y +1)?




Ub

zk .
1 —
| | | L

30 60 90 120 150 180
gamma (deg)

e Here z = 1.5 while y =0, 1, 1.5.

e Note that for a given value of b, the two angu-
lar branches are the strong phase and the weak
phase.
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e Numerical estimate for B~ — K*~[D" — X]|

—Red is for X = Kt7~
— Blue is for X = K 7V

e Assuming:
—a(K*) =6.6 x 107%;
—b(K*)=1.0x 107
— v =90° & = 30° for both modes.
—~Thusd =3x 10", d=8.5x 107"
—acp(K ) =047  acp(KmY) =0.12



e In the above example, if Ng/(acceptance) = 10,
then the 95% cl bound on v is about 10° below
the ideal bound.

go 70 TYmin (95% Cl) Ymin
3030 1.1 9.0
3060 6.5 17.5
30190 13.6 25.0
60 | 60 23.1 39.9
60| 90 38.0 52.8
90190 59.0 90




Possible methods to get around b

e Use many modes and take the best lower bound
(see also 3 body case to follow)

e Use a model to estimate a range in b

e Check an analogous decay where cross channel
interference is smaller: B° — K*[D° — K*r|;
Ay — A[D” — K*tn] where the cross channel
interference should only be ~ 30%: can bound b
to a possibly useful range.

e Use a two or more of quasi-two body modes si-
multaneously — see next.



Two or More Two Body Modes

e The data from two different modes will in general

intersect in 4 points in the v — b plane.

e Three or more modes will, in general, intersect
only at the correct point — the strong phases can
be read off of the other branches of the curves.

e For a sample calculation I will feed in the follow-

ing randomly selected strong phases:

a(K*) =6.6 x 107*  b(K*)=1.0x 107°

Mode | Br(D° — finalstate) | Br(D’ — final state)

Ktr= | (29+£14)x 1074 3.83 x 1072
K*p~ 3.8 x 1074 10.8 x 1072
K*ay 7.0 x 1079 7.3 x 1072
K*tn~ 8.3 x 1074 5.0 x 1072

Branching ratios in units of 10~°

Mode | d; | &; |3(di+d)| o | &
Ktn= | 91| 75 83 0.096 | 10
K% | 842 | 740 791 0.064 | 20
K*p~ | 289 159 224 0.288 | 30
K*ay |203| 90 146 0.383 | 40
K,p° |333]391 362 0.081 | 200
K**r=| 97 | 34 65 0.477 | 50




e Just two modes used:
— K7~ (solid)
— Km0 (short dashes)

e Confidence regions assuming that Ng/acceptance =
10%: 90%; 68%

b (107-6)

gamma deg



e All the modes used:
o Kr~ (solid)  K,m* (short dashes)
K*p~ (long dashes)  KTay (dash-dot)
K,p° (dash-dot-dot)  K**m~ (dash-dash-dot)

e Confidence regions assuming that Ng/acceptance =
10%: 90%; 68%

b (107-6)

0 15 30 45 60 75 90
gamma deg



e Projecting the normalized likelihood distribution

onto the ~ axis in the cases where v = 15%; 30°;
60° and 90°.

e Confidence regions assuming that Np/acceptance =
10%; 90%; 68%

0.0 15.0 30.0 45.0 60.0 75.0 90.0
gamma deg



What States Can be Used?

e One can change D to any excited D% state
e One can change K" to any excited K " state

e The same analysis applies if there is only one am-
plitude.

e [f there are multiple amplitudes (D*K™) one can
consider angular momentum analysis of the de-

cay. [Sinha and Sinha 98]

e Flach combo must be placed on a separate v — b
plot.

e If you assume that Br(B~ — D'K*~) = Br(B’ —
D'K *9) then we can also include BY decays on
the same v — b plot.

[DA in progress]

e Likewise, given Br(A\, - AK~) = Br(B~ —
D'K ~) then we can also include A, decays on
the same v — b plot.

e Phase information from a charm factory could
also be used to provide additional constraints to
a global fit.

[Soffer 98]



A Single Three Body Final States

e Many of the quasi-two body states are channels
in the same three body final state, for instance:
D’ — K% K= Ktp™: — Ko~ 7!

)

e Fach point in the Dalitz plot may be thought as
a separate “mode” so in principle, such a sys-
tem offers an infinitude of “modes” so there is
enough information in such a final state to deter-
mine both v and b.

[DA Dunietz Soni 2000]

e To extract the amplitude, one can fit the distri-
bution to a resonance channel model.

e We can also construct the lower bound on sin®
for each point on the Dalitz plot.

e Generally, the lest lower bound is exactly sin® .

e The same is true for both lower and upper bounds
on b.

e Let us define f(q) as the fraction of the dalitz
plot where the bound on sin® 7 is better than q.

e Using the phenomenological model from E687 for
the CA decay and SU(3) for the DCS decay ...
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e Large partial rate asymmetry
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But what do you really need?

e Blue curve: N7 to see CP violation using only

PRA.

e Red curve: N3 to see CP violation using the
differences in distribution.
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f(q) is the proportion of the Dalitz plot with
sin®vy > g. Curves for sin®~ = 0.25; 0.5; 0.75.



The Impact of DD Oscillation

e [t has been suggested that resonant effects can
give a SM value of yp ~ .01 while physics beyond
the SM could give xp ~ .01 M Gronau 99; H Nelson 99]

e Consider B~ — K~ [D" — K'rn~] where the
last step is DCS. If there is O(1%) chance of
the DY oscillating to a D, the CA decay D’ —
K*7~ will be comparable and disrupt the above
analysis.

e To analyze the expected magnitude of mixing ef-
fects in this system, let us introduce an expansion
parameter u? = b/a.

e Then, numerically ¢/ = O(p?) and if mixing
is near its maximum expected value, then xp =
O(p?) or yp = O(p?) and p ~ 0.1.

e In this regime it is valid to approximate:

d<7-> — (do + le)e_T; a<7-) — (EO 4 317)6_7;

Where 7 = I'pt and dy and dj are the decay rates
that would obtain absent mixing.

e Using the expansion in terms of p, di/dy and
dy/dy are O(p) thus mixing effects are expected
to be ~ 10%.



e Three ways to deal with mixing are:

1. Determine the mixing parameters elsewhere
and fold them into the analysis.

— If the mixing parameters were known, the
determination of {dy, dy dy, dy} would give
enough information to extract v and b.

— This is likely to be practical only if the mix-
ing is very large.

2. Include the possible mixing as a systematic
error in your final result.
[Soffer and Silva 2000]

— An analysis of how the error propagates
through estimates that a mixing bound of
rp, yp < .01 will result in a systematic
error in -y of about 10°



3. Use time dependent information to eliminate
contamination due to mixing.

[DA Dunietz Soni 2000]

— If time dependent information is available,
one can reduce to the unmixed case by con-
voluting the data with the weighting func-
tion w =2 — T:

= [, d(T) wdr = [, d(T) wdr
— The statistical cost of this approach IS:

Nmizc'éng — 2<1 + U2>< + dl/d0> no mixing

— 0 is the (detector time resolution)-I'p.

— Npizing 1s the number of B’s required if
mixing might be present, Ny, mizing Would
be the number of B’s required if mixing is
known to be absent.



Conclusions

e Decays of the form B~ — DK~ allow the op-
portunity to measure v through the interference
of b — c and b — u transitions.

e All DCS decay modes of the D" should be checked
for CP violation. If any are found, a bound on ~y
may be established.

e Data from at least three modes can be used to de-
termine v but as many modes as possible should
be used.

e Three body modes contain additional phase in-
formation; potentially one mode alone could be
used.

e Respectable measurements of v may happen if
Ng/(accept) ~ 10

e The potential for large (1%) DD oscillations in-
troduces about O(10°) systematic uncertainty in
v. Time dependent information can eliminate
this at the cost of a factor of ~ 2 in statistic.



