

The BTeV Collaboration

University of California at Davis New Mexico State University Spokespersons J. Link P. Yager V. Papavassiliou Sheldon Stone Joel Butler University of Colorado at Boulder **Ohio State University** J. Cumalat K. Honscheid H. Kagan Fermi National Accelerator Laboraory University of Pennsylvania J. Appel E. Barsotti C. N. Brown J. Butler H. Cheung W. Selove G. Chiodini D. Christian S. Cihangin I. Gaines P. Garbincius University of Puerto Rico L. Garren E. E. Gottschalk A. Hahn G. Jackson P. Kasper A. Lopez W. Xiong P. Kasper R. Kutschke S. W. Kwan P. Lebrun P. McBride University of Science and Technology of China L. Stutte M. Votava J. Yarba G. Datao L. Hao Ge Jin L. Tiankuan T. Yang X. Q. Yu University of Florida at Gainesville Shandong University, China P. Avery Yu Fu C. F. Feng Mao He J. Y. Li University of Houston L. Xue N. Zhang X. Y. Zhang J. Pyrlik V. Rodriguez B. W. Mayes K. Lau S. Subramania Southern Methodist University Illinois Institute of Technology T. Coan R. A. Burnstein D. M. Kaplan L. M. Lederman H. A. Rubin **SUNY** Albany C. White M. Alam **University of Illinois** Syracuse University M. Haney D. Kim M. Selen J. Wiss M. Artuso K. Khroustalev C. Boulahouache G. Majumder Indiana University **R.** Mountain T. Skwarnicki S. Stone H. W. Zhao J. C. Wang R. W. Gardner D. R. Rust University of Tennessee INFN Milano K. Cho T. Handler **B. Mitchell** D. Menasce S. Sala D. Pedrini L. Moroni Tufts **INFN** Pavia A. Napler G. Boca G. Liquori P. Torre Wayne State University Institute of High Energy Physics (IHEP - Protvino) G. Bonvicini D. Cinabro A. A. Derevschikov Y. Goncharenko V. Khodvrev A. P. Meschanin University of Wisconsin L. V. Nogach K. E. Shestermanov L. F. Soloviev A. N. Vasillev M. Sheaff University of Iowa **Yale University** C. Newsom R. Braunger J. Slaughter University of Minnesota York University V. V. Frolov Y. Kubota R. Poling A. Smith S. Menary Nanjing University T. Y. Chen Ming Qi D. Gao S. Du B. P. Zhang J. W. Zhao

BTEV **Physics Goals**

Detailed study of CP violation in the B sector

- Precise measurements of standard model parameters in the b and c quark systems

- Search for physics beyond the Standard Model

How do you do this?

- -High statistics production of B_d and B_s ($B_c \Lambda_b$ and charm too!)
- Reconstruct large samples of events in some key modes, but try to save all useful data.
 - -Good triggering
 - -Good vertex resolution
 - -Boosted Heavy Flavors
 - -Good mass resolution
 - -Good Particle ID
 - -Have to cover a lot, really well.

Producing Copious B's Lots, "Forward" and "Boosted"

BTeV at the Tevatron

Luminosity (BTeV design)	$2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$
$b\overline{b}$ cross-section	100 µb
# of b's per 10^7 sec	4×10^{11}
$\frac{\sigma(b\bar{b})}{\sigma(total)}$	$\sim 0.15\%$
$e\overline{c}$ cross-section	$> 500 \ \mu b$
Bunch spacing	132 ns
Luminous region length	$\sigma_z = 30$ cm
Luminous region width	$\sigma_x, \sigma_y \approx 50 \ \mu \mathrm{m}$
Interactions/crossing	< 2.0 >

Putting it all together

$B^{o} \rightarrow \rho \pi$ Yields

Quantity	$ ho^{\pm}\pi^{\mp}$	$\rho^{\rho}\pi^{o}$
Branching ratio	2.8×10^{-5}	0.5×10^{-5}
Efficiency	0.0044	0.0036
Trigger efficiency (Level 1)	0.6	0.6
Trigger efficiency (Level 2)	0.9	0.9
S/B	4.1	0.3
Signal/ 10^7 s	9,400	1,350
ϵD^2	0.10	0.10
Flavor tagged yield	940	135

2 years of running for 2000 ev.

Some **BTeV** estimates compared to the LHC

Into from Val Gibson talk, Shaldon Stone, CERN - TH/2000-101, & BTev Proposal 1034/cm²s

	Process	Comparison	BTeV	LHCb	ATLAS	CMS	e*e*
	$B^{o} \rightarrow \pi^{+}\pi^{-}$	$Yield/10^7 s$	24k (2.4K tag)	12k	2.3k (tag)	0.9k(tag)	36 (tay)
	$B^o ightarrow J/\Psi K_s^{\perp}$	$Yield/10^7 s$	80k	88k	165k	433k	~27K
	$B^o \rightarrow \rho \pi$ 2 chgd. π	$Yield/10^7 s$	11k	3.3k	-	-	
	$B_s \rightarrow D_s^{\pm} K^{\mp}$	$Yield/10^7 s$	13k	6k	-	-	
	$B_s ightarrow D_s^\pm \pi^\mp$	$Yield/10^7 s$	103k	86k	3.5k	4.5k	
	$B_s \rightarrow D_s^{\pm} \pi^{\mp}$	$X_s \operatorname{Reach}/10^7 s$	75	75	46	42	
1	$B_s ightarrow J/\Psi \eta^{(\prime)}$	$Yield/10^7 s$	9k	-	-	-	
	$B_s ightarrow J/\Psi \Phi$	$Yield/10^7 s$	-	370k(5 yrs)	300k(3 yrs)	600k (3 yrs)	
2	$B_s \to J/\Psi(\Phi \text{ or } \eta^{(\prime)})$	$\sigma \sin(2\chi)/10^7 s$	0.033	0.03(5 yrs)	0.05(3 yrs)	0.03(3 yrs)	
4	1 Octo = 1. Ink, 2 4.	3, 20°= . 3, B=	-0.5×10-5				
	2 (#/2495")×4 oF	Babar "Start" s	ample.			-	
		B	ev do	es vei	rv we		
	Ener Travus		at * 107	- Q. 1034 (ats			
	101	Brevitos	C.E.C.	a new from			
	NO TOK	200el	ts bert	5			
	B-PU ~	2	1	B=1.7×10, 1	=0.5		

 BTeV is a state of the art detector well suited to the detailed study of CP violation in the B sector

- The trigger is designed to be efficient and flexible (can't predict everything)

-The particle ID and calorimetry will make BTeV very versatile

-Our studies show that we will be competitive with LHC experiments

Block Diagram of Level 1

BTeV Pixel Trigger (FPGA)

BTeV Pixel Trigger (DSP Part A)

DSP's Form tracks form segments found by FPGA's

Momentum of tracks in fiducial

BTeV Pixel Trigger (DSP Part B)

Keep $\sim 50\%$ of B's

Reject 99% of min bias

-Form Verticies

-Require 2 tracks:a) Within 2mm of primaryb) > 6 "errors" of impact

L1 Trigger Performance

State	efficiency(%)	state e	fficiency(%)
${ m B} ightarrow \pi^+ \pi^-$	63	$B^{o} \longrightarrow K^{+}\pi^{-}$	63
$B_s \rightarrow D_s K$	71	$B^{o} \rightarrow J/\psi K$	s 50
$B^- \rightarrow D^{\circ}K^-$	70	$B_s \rightarrow J/\psi K^*$	68
$B^- \rightarrow K_s \pi^-$	27	$B^{o} \rightarrow \rho^{o} \pi^{o}$	56

 Full GEANT simulations including pattern recognition done for trigger

Refinements and Recoveries in Level 2 and Level 3

Cleaning Up Segments: The Novie

Pixel hits after 1st segment finding

Cleaning Up Segments: The Sequel

This is the most Dramatic change..