Main harrel

Vacuum vesse

E391a Run3 Analysis

Workshop "New Developments of Flavor Physics" 2009 (2009 Mar 9) Hideki MORII (Kyoto Univ.)

Contents

Gsl - calorimeter

• E391a Experiment

- overview
- Run3 Analysis
 - Confirmation
 - Run stability
 - KL flux estimation
 - Optimization
 - Acceptance study
 - modified halo-n MC

Gsi - catorimeter

Main harrel

Introduction

- Vacuum vessel

Introduction

E391a Experiment

- Measures $K_L \rightarrow \pi^0 \nu \nu \omega$ @ KEK 12GeV PS
 - first dedicated experiment
 - pilot experiment for K^oTO (J-PARC E14)
- Three Physics Runs
 - Run1 (2004 Feb-Jul)
 - Run2 (2005 Feb-Apr)
 - Run3 (2005 Nov-Dec)
- Run2 Result blind analysis
 No event observed in the signal box
 Upper limit 6.7 x 10⁻⁸ (90% C.L.) (Phys. Rev. Lett. 100 201802, 2008)
 Workshop "New Developments of Flavor Physics" 2009 2009/Mar/9

Introduction

Experimental Principles

• How to identify $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$ state? $\downarrow 2\overline{\gamma}$ cannot detect • "2 γ + nothing"

- $2\gamma \rightarrow Csl$ calorimeter (energy, position)
- nothing \rightarrow hermetic veto detector
- Reconstruct decay vertex with $M(\pi^{0})^{P_{T}}$ $M(\pi^{0}) = E_{1}E_{2}(1-\cos\theta)$
 - select signal using decay vertex and transverse momentum

Workshop "New Developments of Flavor Physics" 2009 2009/Mar/9

signal region

E391a Detector

Gsi - catorimeter

Main barrel

Vacuum vessel

Run3 Analysis

Run3 Analysis Overview

Strategy for Run3 Analysis

Step I : Confirmation

Main harrel

Vacuum vessel

Step1: Confirmation

Run stability KL flux estimation

Step I : Confirmation Calibration & Run Stability

 Calibration & Run Stability completed / confirmed

Step I : Confirmation Calibration & Run Stability

 Calibration & Run Stability completed / confirmed

Step I : Confirmation Reconstructed Mass Distriburtion

• Reconstructed mass distribution checked for KL \rightarrow 3 π^{0} and KL \rightarrow 2 π^{0} modes

Step I : Confirmation Reconstructed Mass Distriburtion

• Reconstructed mass distribution checked for KL \rightarrow 3 π^{0} and KL \rightarrow 2 π^{0} modes

KL Flux Estimation

 # of K_L is estimated via 3 decay modes : K_L \rightarrow 3 π^{0} , 2 π^{0} , 2 γ

mode	# of events in data	# of events in MC(addbg)	acceptance	flux
3 π ⁰	48229	8149	7.62 x 10⁻⁵	3.24 x 10 ⁹
		(stat. 5.0e9)		(-5.0%)
2π ⁰	1072	11620	3 62 v 10-4	3.41 x 10 ⁹
		(stat. 1.5e9)	3.02 × 10 *	()
γγ	14278	30148	7.04 x 10 ⁻³	3.70 x 10 ⁹
		(stat. 2.0e8)		(+8.5%)

cf.) Run2	3π ⁰ : 5.02 x 10 ⁹ (-2.1%))
	2π ⁰ : <mark>5.13 x 10</mark> ⁹ ()	
	$\gamma\gamma$: 5.45 x 10 ⁹ (+6.2%)	<u>)</u>

Run3 statistics : ~70% of Run2

Step I : Confirmation

Step2 : Optimization

Main harrel

Vacuum vessel

Step2: Optimization

Optimization for event selection Modified halo-n MC

Step2 : Optimization Analysis Effort on Run3

- Modification from Run2 analysis wanting more acceptance better understanding to background
- Study for increasing acceptance optimize event selection
 Better understanding to BG events modify halo-n MC

Step2: Optimization

Study for Getting More Acceptance

Largest acceptance loss in Run2
 "γ-RMS cut" (~42%)
 to reject "CV halo-neutron" background

How does CV halo-n events makes background?

Step2: Optimization

Fusion Neural Network Cut

 Utilize neural network cut instead of RMS cut

Step2: Optimization

Fusion Neural Network Cut

 Utilize neural network cut instead of RMS cut

Neural-net out(0=fuse, 1=normal)

Modified Halo-n Monte Carlo

- Wanting better estimation for halo-n BG
 - utilize fluka package \rightarrow better reproductivity
 - Recycling method

recycle the event seed which could be background

Modified Halo-n Monte Carlo

- Wanting better estimation for halo-n BG
 - utilize fluka package \rightarrow better reproductivity
 - Recycling method

recycle the event seed which could be background

Summary

• E391a experiment @ KEK 12GeV PS

- fist dedicated for $K_L \rightarrow \pi^0 \nu \overline{\nu}$
- Run3 analysis
- Confirmation
 - data taking : stable
 - KL flux : ~70% of Run2
- Optimization
 - Optimize event selection
 - Modify halo-neutron MC

Workshop "New Developments of Flavor Physics" 2009 2009/Mar/9

Summary

Gsi - calorimeter

Beyond the Standard Model

 $K^{0}_{L} \rightarrow \pi^{0}\pi^{0}$ Background

- •1 event remaining w/ x9.6 statistics
 - weight: 1.16
 - BG: 0.12±0.12 events

03

$K^{O}_{L} \rightarrow \gamma \gamma BG$

 "Acoplanarity" angle cut for P_T mis-measurement
 Rejection: ~1x10⁵

Result

- N_{BG} < 3.9x10⁻⁶
• negligible

CCO2 Events

- CC02/Al events in 200-300cm
 - Normalization by the number of events
 - Smearing using the distribution by MC
- Events in the Control Region
 - 300-340cm: 1.9±0.2 events
 > observed: 3 events
- Result of BG at 340-500cm
 - Signal in the Al plate run: 9
 - $-9*(120/6824) = 0.16 \pm 0.05$ event

CV-π⁰ Background

0.4

0.35

0.3

600

$CV-\pi^0$ Background

0.35

0.3

Improvement in the Upper Limit

- CC02 : full active, fine segment

Physics of $K_L \rightarrow \pi^0 \nu \nu$

なぜ $K_L \rightarrow \pi^0 \nu \overline{\nu} \overline{\nu}$ を測るのか?

- 理論的不定性が小さい (~数%)
 "gold-plated" mode
- CKM matrixの複素成分ηを直接測定 分岐比 Br(π⁰νν)∝η²: CPの物理
- New Physicsへのプローブ
 B中間子系との比較
 標準模型では
 - 分岐比 = 2.5 x 10⁻¹¹

detector

pencil neutral beam line

(6 collimators)

 P_T

Pt target

12GeV proton

Experimental Principles

・ どうやって終状態 KL $\rightarrow \pi^{0} \nu \nu \overline{\nu}$ をIDするのか?

• " 2γ + nothing"

- 2 γ → Csl カロリメータ (位置, エネルギー)
- nothing → 全域を覆うveto検出器
- π^oの質量を仮定して崩壊位置を再構成 M(π^o) = E₁E₂(1-cos θ)
 崩壊点と縦運動量によって signal regionを選択する

Workshop "New Developments of Flavor Physics" 2009 2009/Mar/9

31

Experimental Principles

・ どうやって終状態 $K_{L} \rightarrow \pi^{0} \nu \nu \overline{\nu} E ID \sigma \sigma n?$ $\downarrow_{2\gamma} \rightarrow 見 z a v$ ・ "2 γ + nothing"

 P_T

- 2 γ → Csl カロリメータ (位置, エネルギー)
- nothing → 全域を覆うveto検出器
- π^oの質量を仮定して崩壊位置を再構成 M(π^o) = E₁E₂(1-cos θ)
 崩壊点と縦運動量によって signal regionを選択する

Workshop "New Developments of Flavor Physics" 2009 2009/Mar/9

signal region

Concept of Detector

 K_L

Introduction

Workshop "New Developments of Flavor Physics" 2009 2009/Mar/9

32

Gsi - calorimeter

Concept of Detector

Introduction

Background Events - K中間子起源

・ K∟崩壊由来のバックグラウンド

K_L→2π⁰ (→4γ)
 4つのγ線のうち2つをmiss

K_L→π+π⁻π⁰
 2つの荷電粒子をmiss

Background Events - ハロー中性子起源

- ハロー中性子
 ビームの周辺に中性子が残る
 →検出器と反応してπ⁰を生成
- CCO2バックグラウンド *γ*線のエネルギーを低く間違える

 CV バックグラウンド
 *γ*線のエネルギーを高く間違える
- CV-ηバックグラウンド

Bsi - calerimeter

Main harrel

Vacuum vessel

E391a Experiment

Signal/back ground summary

		# of event
Signal	$K_L \!\! = \!\! > \!\! \pi^0 \nu \nu$	2. 7±0. 05
KL BG	$K_L^{->\pi^0\pi^0}$	1. 7±0. 1
	$K_{L} {=} {\geq} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle 0}$	0. 08±0. 04
	$K_L - > \pi^- e^+ v$	0. 02±0. 001
Halon BG	$CV - \pi^0$	0. 08
	CV- η	0.3

- 評価方法
 - Kaon BG
 - fast simulation 各検出器の応答はresponse functionで評価
 - Halon BG
 - full simulationによる評価