Hadron spectroscopy at Belle

Jolanta Brodzicka (Krakow) Hadron Workshop, Nagoya 6-7 December 2008

Belle at KEKB

KEKB: asymmetric e⁺e⁻ collider
 e⁺: 3.5 GeV × e⁻: 8.0 GeV
 √s=10.58 GeV = Υ(4S) mass
 e⁺e⁻ → Υ(4S) → BB

Operating since 1999
 Peak luminosity: 1.71×10³⁴cm⁻²s⁻¹
 Integrated luminosity: 860 fb⁻¹
 750 fb⁻¹ @ Y(4S)
 ~ 780 * 10⁶ BB
 ~ 960 * 10⁶ cc
 Beauty and Charm Factory

History of spectroscopy at Belle

cc-like XYZ states : exotics? I will focuse on them

Conventional vs exotic states

- Quark Model by Gell-Manna and Zweiga (1964): (q<u>q</u>) mesons and (qqq) baryons
 = <u>conventional states</u>
- QCD based potential models → hadron masses, decays,...
 Observed cc multiplets agree with the models' predictions
- States more complex than qq or qqq
 =<u>exotics</u> also predicted by the models
- c<u>c</u> spectrum "cleaner" than u<u>u</u>/d<u>d</u>/s<u>s</u> → c<u>c</u>-like exotics easier to identify

q

Menu of c<u>c</u>-like exotics

- <u>Hybrids</u>: <u>cc</u> + excited gluon (excited flux-tube)
 - Lattice QCD: lightest hybrids @ 4.2GeV
 - Exotic quantum numbers $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}...$
 - $\Gamma(H \rightarrow D\underline{D}^{**}) > \Gamma(H \rightarrow D\underline{D}^{(*)})$
 - Large $\Gamma(H \rightarrow \psi \pi \pi, \psi \omega, ...)$

- <u>Tetraquarks</u>: diquark-antidiquark [cq][cq]
 - Tightly bound diquarks (gluon exchange)
 - Decay: "coloured" quarks rearrange into "white" mesons
 → dissociation
- <u>Molecules</u>: M(c<u>q</u>)M(<u>c</u>q)
 - Meson and antimeson loosely bound (pion exchange)
 - Decay: dissociation into constituent mesons

How to identify exotic cc hadron?

- J^{PC} forbidden for conventional c<u>c</u>
- Final states with non-zero electric charge and/or strangness: J/ψπ⁻ =(c<u>c</u>)(<u>u</u>d) D_s⁺D⁻ =(c<u>s</u>)(<u>c</u>d)
- Too small/large rates in some decay modes

Recently observed cc-like states

State	EXP	M + i Γ (MeV)	J ^{PC}	Decay Modes Observed	Production Modes Observed
X(3872)	Belle,CDF, DO, Cleo, BaBar	3871.2 <u>±</u> 0.5 + i(<2.3)	1++	π⁺π⁻ፓ/ψ, π⁺π⁻π ^ϲ ፓ/ψ, Υፓ/ψ	B decays, ppbar
	Belle BaBar	3875.4 <u>+</u> 0.7 ^{+1.2} -2.0 3875.6 <u>+</u> 0.7 ^{+1.4} -1.5		D ⁰ D ⁰ π ⁰	B decays
Z(3930)	Belle	3929±5±2 + i(29±10±2)	2++	D ⁰ D ⁰ , D⁺D⁻	ΥΥ
Y(3940)	Belle BaBar	3943±11±13 + i(87±22±26) 3914.3 ^{+3.8} -3.4 ±1.6+ i(33 ⁺¹² -8 ±0.60)	J++	ωĴ/ψ	B decays
X(3940)	Belle	3942 ⁺⁷ -6±6 + i(37 ⁺²⁶ -15±8)	J [₽] ⁺	DD*	e⁺e⁻ (recoil against J/ψ)
Y(4008)	Belle	4008±40 ⁺⁷² -28 + i(226±44 ⁺⁸⁷ -79)	1	п⁺п⁻J/ψ	e⁺e⁻(ISR)
X(4160)	Belle	4156 ⁺²⁵ - ₂₀ ±15+ i(139 ⁺¹¹¹ - ₆₁ ±21)	J [₽]	D*D*	e⁺e⁻ (recoil against J/ψ)
Y(4260)	BaBar Cleo Belle	$\begin{array}{l} 4259 \pm 8^{+3} _{-6} + i(88 \pm 23^{+6} _{-4}) \\ 4284^{+17} _{-16} \pm 4 + i(73^{+39} _{-25} \pm 5) \\ 4247 \pm 12^{+17} _{-32} + i(108 \pm 19 \pm 10) \end{array}$	1	π⁺π⁻ፓ/ψ, π⁰π⁰ፓ/ψ, κ⁺κ⁻ፓ/ψ	e⁺e⁻ (ISR), e⁺e⁻
Y(4350)	BaBar Belle	4324 <u>+</u> 24 + i(172 <u>+</u> 33) 4361 <u>+</u> 9+9 + i(74 <u>+</u> 15 <u>+</u> 10)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)
Z⁺(4430)	Belle	4433±4±1+ i(44 ⁺¹⁷ -13 ⁺³⁰ -11)	J٩	π⁺ψ(2S)	B decays
Y(4620)	Belle	4664 <u>±</u> 11±5 + i(48 <u>±</u> 15±3)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)
Z ⁺ (4051)	Belle	$4051 \pm 14^{+20}_{-41} + i(82^{+21}_{-17}^{+47}_{-22})$	J₽	π ⁺ χ _{c1}	B decays
Z ⁺ (4248)	Belle	4248 ⁺⁴⁴ - ₂₉ ⁺¹⁸⁰ -135 + i(177 ⁺⁵⁴ - ₃₉ ⁺³¹⁶ - ₆₁)	J₽	π ⁺ χ _{c1}	B decays

Production of cc in B Factory

• B meson decays: $B \rightarrow Xcc K (BF \sim 10^{-3})$

$$B \left\{ \begin{array}{c} b \\ \underline{u}, \underline{d} \end{array} \right\} \left\{ \begin{array}{c} c \\ \underline{v} \\ W \end{array} \right\} \left\{ \begin{array}{c} c \\ \underline{c} \end{array} \right\} X = \eta_c \chi_c \Psi \dots \\ \begin{array}{c} s \\ \underline{u}, \underline{d} \end{array} \right\} K$$

• double c<u>c</u> production $e^+e^- \rightarrow J/\psi Xc\underline{c}$

• initial state radiation (ISR) $e^+e^- \rightarrow \gamma_{ISR} Xcc \rightarrow \gamma_{ISR} \psi \pi \pi$

Good experimental environment to search for new resonances

First charged cc-like state! Must be exotic! Proposed interpretations:

- [cu][cd] tetraquark; neutral partner in ψ'π⁰ expected
- D*<u>D</u>1(2420) molecule; should decay to D*<u>D</u>*п

No significant Z+(4430) in Babar

hep-ex/0811.0564

- **B** $\psi'\pi^+K$ studied using 413/fb
- Mass spectra corrected for efficiency

$B \rightarrow \psi' \pi^+ K$ Dalitz plot analysis

- B ψ'π⁺K amplitude: coherent sum of Breit-Wigner contributions
- Maximum likelihood fit to Dalitz plot
- Models: all known К*→Кп⁺ resonances only

all known $K^* \rightarrow K\pi^+$ resonances and $Z \rightarrow \psi'\pi^+$ – favored by data

Z⁺(4430) confirmed

PRD 78, 072004 (2008)

$\underline{B^0} \longrightarrow X_{c1} \Pi^+ K^-$ study. More Z's

• Dalitz-plot analysis of <u>B</u>⁰ $\chi_{c1}\pi^+K^-\chi_{c1}$ J/ $\psi\gamma$ with 657M B<u>B</u>

 <u>B</u>⁰ χ_{c1}π⁺K⁻ amplitude: coherent sum of Breit-Wigner contributions

Maximum likelihood fit performed

Models tried:

known K*′s→Kп only

K*'s + one $Z \rightarrow \chi_{c1} \pi^+$

K*'s + two Z states : favored by data

B

$Z^+_{1,2} \rightarrow X_{C1}\Pi^+$ exotic states

- Model with two Z's significantly favored by data
- Spin of Z states not determined: spin 0 and 1 give similar fit qualities

$$\begin{split} M_1 &= (4051 \pm 14^{+20}_{-41}) \,\mathrm{MeV}/c^2, \\ \Gamma_1 &= (82^{+21+47}_{-17-22}) \,\mathrm{MeV}, \\ M_2 &= (4248^{+44+180}_{-29-35}) \,\mathrm{MeV}/c^2, \\ \Gamma_2 &= (177^{+54+316}_{-39-61}) \,\mathrm{MeV}, \end{split}$$

$$\mathcal{B}(\overline{B}^{0} \to K^{-}Z_{1}^{+}) \times \mathcal{B}(Z_{1}^{+} \to \pi^{+}\chi_{c1}) = (3.1^{+1.5+3.7}_{-0.9-1.7}) \times 10^{-5},$$
$$\mathcal{B}(\overline{B}^{0} \to K^{-}Z_{2}^{+}) \times \mathcal{B}(Z_{2}^{+} \to \pi^{+}\chi_{c1}) = (4.0^{+2.3+19.7}_{-0.9-0.5}) \times 10^{-5}.$$

fit for null model
 fit for double Z model
 Z₁ contribution
 Z₂ contribution

Non-zero charge suggests multiquark interpretation of Z₁ and Z₂

cc-like example: X(3872)

• X(3872) $J/\psi n^+ n^-$ observed in B⁺ X(3872)K⁺ by Belle

PRL91, 262001 (2003)

• Confirmed by BaBar, CDF, D0

- $m_X = 3871.2 \pm 0.5 \text{ MeV} m_X (m_{D^{*0}} + m_{D^0}) = -0.6 \pm 0.6 \text{MeV} \Gamma < 2.3 \text{MeV}$
- M(π⁺π⁻) suggests X(3872) J/ψ ρ (S- or P-wave)
- Other decay modes: $J/\psi\gamma$, $\psi(2S)\gamma$, $J/\psi\omega$, $D\underline{D}^*$, no $X \rightarrow D\underline{D}$
- J^{PC}= 1⁺⁺, 2⁻⁺ favored (from angular analysis by CDF, M(π⁺π⁻), decay modes)

What is X(3872) **P**

• **CC**? No obvious assignment

 D⁰<u>D</u>*⁰ molecule? Non-trivial line shape Γ(X→D<u>D</u>*)>Γ(X→J/ψππ) Production in B⁰ suppressed in regard to B⁺

Braaten et al. hep-ph/0710.5482

• 4-quark?

X_u [uc][<u>uc</u>] X_d [dc][<u>dc</u>] Different mass of X produced in B⁰ and B⁺ Finding charged X is critical (no evidence so far)

Maiani, Polosa et al. PRD 71, 014028 (2005)

PRD71, 031501 (2005)

X(3872) in B⁺ vs B⁰ decays

hep-ex/0809.1224

• Study of X(3872) $J/\psi\pi^+\pi^-$ in B⁺ XK⁺ and B⁰ XK⁰_s

 $\delta M_X = M(X \text{ from } B^+) - M(X \text{ from } B^0) = 0.22 \pm 0.90 \pm 0.27 \text{ MeV}$

$$R^{0/+} = \frac{\mathcal{B}(B^0 \to X(3872)K^0)}{\mathcal{B}(B^+ \to X(3872)K^+)} = 0.94 \pm 0.24 \pm 0.10$$

• Similar properties of X(3872) from B⁺ and B⁰ decays

Maiani, Polosa et al. hep-ph/0707.3354 X_u [uc][<u>uc</u>]→ <u>D</u>⁰D⁰π⁰= X(3875) X_d [dc][<u>dc</u>]→ J/Ψππ = X(3872)

X(3940) and X(4160) in $e^+e^- \rightarrow J/\Psi X_{cc}$

PRL100, 202001 (2008)

- x-sections much larger than QCD predicted
 → factory of 0⁺⁺ and 0⁻⁺ charmonia
- Search for $X \rightarrow \underline{D}D^*$ and \underline{D}^*D^* in $e^+e^- \rightarrow J/\psi \underline{D}^{(*)}D^*$

 $M = 3942^{+7}_{-6} \pm 6 \text{ MeV}$ $\Gamma = 37^{+26}_{-15} \pm 12 \text{ MeV}$

 $M=4156^{+25}_{-20} \pm 15 \text{ MeV} \qquad \underline{C_{x}=+1 \text{ so}} \\ \Gamma=139^{+111}_{-61} \pm 21 \text{ MeV} \qquad \underline{X(4160) \neq \psi(4160)} \\ \end{array}$

 Possible assignments: η_c(3S) η_c(4S) (but X masses ~100-150MeV above predictions for η_c's) J/ψ

$1 - Y \rightarrow \psi \pi \pi$ states via ISR

- Y(4008), Y(4260), Y(4360), Y(4660)
- More 1⁻ states than empty slots in c<u>c</u> spectrum

Unusual properties:

- Large widths for ψππ transition: unlike for conventional cc
- Above D<u>D</u> threshold but don't match the peaks in D^(*)D^(*) x-sections

Other options:

- D<u>D</u>₁ or D^{*}<u>D</u>₀ molecules
- cq<u>cq</u> tetraquarks
- ccg hybrid:
 DD1 decay mode should dominate
- Coupled-channel effects
- Charm-meson threshold effects

Exclusive x-sections with ISR

PRD 77, 011103 (2008) for 673fb⁻¹ PRL 98, 092001 (2007) for 548fb⁻¹ PRL 100, 062001 (2008) for 673fb⁻¹

 Difficult interpretation in terms of resonances (model dependent coupled-channel and threshold effects...)

cc (-like) state of art

- We have observed a few new states
- Most of them don't match cc spectrum

bb analog of Y(4260)?

- If bb follows the cc pattern: Y_b Y(nS)nn with large partial width
- Study of Y(mS) Y(nS)π⁺π⁻ with data at Y(5S)~10.87GeV (21.7/fb)

Г (MeV) 🔰 Process 0.59±0.04±0.09 "Y(5S)"→Y(1S)ππ 0.85±0.07±0.16 "Y(5S)"→Y(2S)ππ 0.52^{+0.20}_{-0.17}±0.10 "Y(5S)"→Y(3S)ππ

PRL100, 112001(2008)

Large $\Gamma(Y(5S) \rightarrow Y(nS)nn)!$ or other b<u>b</u> states: $\Gamma \sim O(keV)$ Is it Y_b? Mixture of Y(5S) and Y_b?

• Energy scan around Y(5S) (7.9/fb)

Observed shape disagree with Y(5S) hypothesis (fit).

Yb at 10.89GeV?

Summary

- New charmonium spectroscopy @4GeV
- Candidates for exotic hadrons observed: $Z^+(4430) \rightarrow \psi' \Pi^+ Z^+(4050), Z^+(4248) \rightarrow \chi_{c1} \Pi^+$
- Many other states await understanding X(3872) Y(3940) Y-family...
- Y_b? New spectroscopy also in b quark sectors?
- Theory input needed (models to verify, threshold effects, coupled channel effects)

$Y(nS)\pi\pi$ Resonant Shapes

A χ^2 fit to the measured cross sections: (7 energies x 3 states = 21 points)

page, 15

A common Breit-Wigner (floated mean & width) with floated 3 normalizations (for 1S, 2S, and 3S).

The mean value is ~20 MeV higher than the Y(10860), and the width is around half (110 MeV → 55 MeV)!

(Peak cross section for Y (5S) is around 300 pb)

Compare with PDG Y(5S) Parameters

The observed hadronic ratios are consistent with the PDG two Breit-Wigner interpretation:

Belle PRL 94, 182002 (2005)

Babar hep-ex/0711.2047 submitted to PRL

- Study of B KJ/ψω ω π⁺π⁻π⁰
- M_{bc}, ΔE and M(π⁺π⁻π⁰) selection

Y(3940)→J/Ψω

BF(B KY)*BF(Y J/ $\psi\omega$)= Belle (7.1 ± 1.3 ± 3.1)*10⁻⁵ Babar (4.9 ± 1.0 ± 0.5)*10⁻⁵

mass/width discrepancy needs further study

- Y(3940) above D<u>D</u> threshold but has large cc transition
- Candidate for c<u>c</u>-gluon hybrid? (but hybrids predicted >4GeV)
- Re-scattering $D\underline{D}^* \rightarrow J/\psi \omega$?

PRL100, 202001 (2008) $X(3940) \rightarrow DD^* and X(4160) \rightarrow D^*D^*$

 Reconstruct J/ψ and one D^(*), associated D^(*) seen as peak in M_{recoil}(J/ψD^(*))

 Possible assignments: η_c(3S) η_c(4S) (but X masses ~100-150MeV above predictions for η_c's)

PRL 99, 182004 (2007)

 $Y \rightarrow J/\psi \pi \pi v i a ISR$

- Study of e⁺e⁻ J/ψπ⁺π⁻ γ_{ISR} (548 fb⁻¹)
- J/ψ ee, $\mu\mu$ + nn; no extra tracks
- ISR photon is not detected
- Missing mass used to identify process

Parameters	Solution \mathbf{I}	Solution II	
M(R1)	4008 ±	$\pm 40^{+114}_{-28}$	
$\Gamma_{\rm tot}(R1)$	$226 \pm 44 \pm 87$		
$\mathcal{B} \cdot \Gamma_{e^+e^-}(R1)$	$5.0 \pm 1.4^{+6.1}_{-0.9}$	$12.4 \pm 2.4 \substack{+14.8 \\ -1.1}$	
M(R2)	4247	$\pm 12^{+17}_{-32}$	
$\Gamma_{\rm tot}(R2)$	$108 \pm$	19 ± 10	
$\mathcal{B}\cdot \Gamma_{e^+e^-}(R2)$	$6.0\pm1.2^{+4.7}_{-0.5}$	$20.6 \pm 2.3 \substack{+9.1 \\ -1.7}$	
ϕ	$12 \pm 29^{+7}_{-98}$	$-111\pm7^{+28}_{-31}$	

- Y(4260) confirmed
- Y(4008) resonance? Re-scattering from DD*? Coupled-channel effect?

$Y \rightarrow \psi' \pi \pi via ISR$

PRL 99, 142002 (2007)

- Study of e⁺e⁻ ψ'π⁺π⁻ γ_{ISR} (673 fb⁻¹)
- ψ'→J/ψпп, J/ψ ee, μμ + пп
- no additional tracks allowed
- γ_{ISR} not detected
- Two significant peaks in M(ψ'ππ) : one close to Babar's Y(4360) but narrower

• $M(\psi'\pi\pi)$ fitted with two coherent Breit-Wigners

Parameters	Solution I	Solution II
M(Y(4360))	4361 ±	$= 9 \pm 9$
$\Gamma_{\rm tot}(Y(4360))$	74 ± 1	5 ± 10
$\mathcal{B} \cdot \Gamma_{e^+e^-}(Y(4360))$	$10.4\pm1.7\pm1.5$	$11.8\pm1.8\pm1.4$
M(Y(4660))	$4664~\pm$	11 ± 5
$\Gamma_{\rm tot}(Y(4660))$	$48 \pm 15 \pm 3$	
$\mathcal{B} \cdot \Gamma_{e^+e^-}(Y(4660))$	$3.0\pm0.9\pm0.3$	$7.6\pm1.8\pm0.8$
ϕ	$39\pm30\pm22$	$-79 \pm 17 \pm 20$

x-sections for $e^+e^- \rightarrow \psi m$

- ISR allows us to measure hadronic x-sections in wide energy range: model independent measurement
- M(ψππ): background subtracted, corrected for efficiency and luminosity Cross-section for e⁺e⁻ ψπ⁺π⁻

BELLE-BABAR COMPARISON

Not applied efficiency correction to the data and applying the K* veto

Both Belle and *BABAR* data are re-binned (to calculate χ^2) and side-band subtracted The *BABAR* data are normalized to the Belle sample. The data distributions are statistically consistent (χ^2 =54.7/58)

G. CIBINETTO

SEARCH FOR Z(4430)- AT BABAR

Br(B⁰→X(K⁺π⁻)_{non_res}) Br(X→J/ψπ⁺π⁻) = (8.1 ± 2.0^{+1.1}_{-1.4})10⁻⁶ dominates ! unlike B→K"cc¯"

$$Br(B^{0} \to XK^{*0})Br(X \to J/\psi\pi^{+}\pi^{-}) < 3.4x10^{-6} 90\% CL \\ \frac{Br(B^{0} \to X(K^{+}\pi^{-})_{non \ res})}{Br(B^{0} \to XK^{0}_{s})} \sim 1_{34}$$

ICHEP2008

Galina Pakhlova, ITEP

X(2175) strange analog of Y(4260)?

• $X(2175) \rightarrow \phi f_0(980), \phi \eta$ (confirmed by BESII and Belle)

M(Y(2175))=(2133 ⁺⁶⁹₋₁₁₅) MeV/c², Γ(Y(2175))=(169 ⁺¹⁰⁵₋₉₂) MeV/c².

hep-ex/0808.0006

Hadronic x-sections

- From CLEO: scan at 3.97-4.26GeV in 12 points
- Total hadronic x-section above DD from BES
- Belle: sum of all measured exclusive contributions

Is X(3872) a c<u>c</u> state **?**

J. Brodzicka @ PICO8

Yb counterpart ?

Process		Yield	σ(pb)	BF(%)	Г(MeV)
"Y(5S)"	Y(1S)nn	325 + 20	1.6 + 0.1 + 0.1	0.53+0.03+0.05	0.59 + 0.04 + 0.09
"Y(5S)"	Y(2S)пп	186 ± 15	$2.3 \pm 0.2 \pm 0.3$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.1$
"Y(5S)"	Y(3S)пп	10 ± 4	$1.4 \pm 0.5 \pm 0.2$	$0.48 \pm 0.18 \pm 0.0$	$0.52 \pm 0.20 \pm 0.10$

Brown-Cahn (CLEO) model (grey) generic phase space (open)

• M(ππ) and cosθ_{hel} studied

How to identify B meson signal

- Advantage of e⁺e⁻→Y(4S) → BB kinematics: m_{Y(4S)}~m_B+m_B no accompanying particles
 → E_B=E_{beam}=√s/2 in Y cms
 kinematical variables used in B-Factories
 M_{bc}= √E²_{beam}- p²_B beam-constrained mass
 - beam-constrained mass (signal at $m_B \sim 5.28 \text{GeV}$) $\Delta E = E_B - E_{beam}$ cms energy difference (signal peaks at 0)
- Resolution improvement (E_{beam} is precisely known)
- Background separation

