

Fig. 3. Sketch of the $B^--\overline{B}^0$ event. J.P.Albanese et al., Phys. Lett. 158B (1985)186

S.Aoki et al., Phys. Lett. 187B (1987)185

interaction.

→ What is those feature?

Few body system of nucleon or quarks?

р

QCD **Predicted masses** typical example -> H-dibaryon mass (0.1GeV/c2/bin) Ф **ΣΣ(2.38)** IE(2.26) H-dibaryon AA(2.23) S u NN(1.88) NN O QCD Sum Rule d d Bag Models Chiral Models ▲ Lattice Calculations S u or Instanton Calculations Quark Potential Models Quark Pairing Mechanism ▲ Color Dielectric Model Fermi Breit Approximation d u 1995 1975 1980 1985 1990 2000 Λ S Updated from the year 1995, referred on d u S.V.Bashinsky, R.L.Jaffe, Nucl. Phys. A625(1997)167, and W.J.Lope, talk given at '12th Winter Workshop on Nuclear Dynamics' S

Evidence is not seen, yet.

Ξ⁻ hyperons are useful

PDG 08

40. Plots of cross sections and related quantities 355

Average Hadron Multiplicities in Hadronic e^+e^- Annihilation Events

Table 40.1: Average hadron multiplicities per hadronic e^+e^- annihilation event at $\sqrt{s} \approx 10, 29-35$, 91, and 130 200 GeV. The rates given include decay products from resonances with $c\tau < 10$ cm, and include the corresponding anti-particle state. Correlations of the systematic uncertainties were considered for the calculation of the averages. (Updated August 2007 by O. Biebel, LMU, Munich)

Particle	$\sqrt{s}pprox 10~{ m GeV}$	$\sqrt{s}=29{-}35~{ m GeV}$	$\sqrt{s} = 91~{ m GeV}$	$\sqrt{s} = 130200~\mathrm{GeV}$						
Pseudoscalar mesons:										
π^+	6.6 ± 0.2	10.3 ± 0.4	17.02 ± 0.19	21.24 ± 0.39						
π^0	3.2 ± 0.3	5.83 ± 0.28	9.42 ± 0.32							
K^+	0.90 ± 0.04	1.48 ± 0.09	2.228 ± 0.059	2.82 ± 0.19						
K^0	0.91 ± 0.05	1.48 ± 0.07	2.049 ± 0.026	2.10 ± 0.12						
η	0.20 ± 0.04	0.61 ± 0.07	1.049 ± 0.080							
n/(958)	0.03 ± 0.01	0.26 ± 0.10	0.152 ± 0.020	$D^+ \cap 104 + 0.010(k)$						
D^+	$0.194 \pm 0.019^{(k)}$	0.17 ± 0.03	0.175 ± 0.016	10.194 ± 0.019						
D^0	$0.446 \pm 0.032^{(k)}$	0.45 ± 0.07	0.454 ± 0.030	$D^0 \cap AAG + \cap O22(k)$						
D_s^+	$0.063 \pm 0.014^{(k)}$	$0.45 \pm 0.20^{(a)}$	0.131 ± 0.021	$D = 0.440 \pm 0.032^{(1)}$						
B^+,B^0_d			$0.165 \pm 0.026^{(b)}$	$D^{\dagger} 0.002 + 0.014(k)$						
B_u^+			$0.178 \pm 0.006^{(b)}$	$D_{s} = 0.003 \pm 0.014^{(3)}$						
B_s^0			$0.057 \pm 0.013^{(b)}$	0						
	E several * 10 [°] DD-bar									
Barvons:		•								
p	0.253 ± 0.016	0.640 ± 0.050	1.050 ± 0.032	1.41 ± 0.18						
A	0.080 ± 0.007	0.205 ± 0.010	0.3915 ± 0.0065	0.39 ± 0.03						
Σ^0	0.023 ± 0.008		0.076 ± 0.011							
Σ^{-}			0.081 ± 0.010							
Σ^+			0.107 ± 0.011							
Σ^{\pm}			0.174 ± 0.009	anvaral + 406 V: hymerope						
5-	0.0059 ± 0.0007	0.0176 ± 0.0027	0.0258 ± 0.0010	several * 10° XI- hyperons						
$\Delta(1232)^{++}$	0.040 ± 0.010		0.085 ± 0.014							
$\Sigma(1385)^{-}$	0.006 ± 0.002	0.017 ± 0.004	0.0240 ± 0.0017	Event coloction						
$\Sigma(1385)^{+}$	0.005 ± 0.001	0.017 ± 0.004	0.0239 ± 0.0015	Event Selection						
$\Sigma(1385)^{\pm}$	0.0106 ± 0.0020	0.033 ± 0.008	0.0462 ± 0.0028							
$\Xi(1530)^{0}$	0.0015 ± 0.0006		0.0068 ± 0.0006	3=+∠						
Ω	0.0007 ± 0.0004	0.014 ± 0.007	0.0016 ± 0.0003	$a_{\rm M}$ ($M_{\rm M}$ = $M_{\rm M}$) ($M_{\rm M}$ = $M_{\rm M}$ = $M_{\rm M}$						
Λ_c^+	$0.074 \pm 0.031^{(i)}$	0.110 ± 0.050	0.078 ± 0.017	ex.(n+, n+)(n+, n°-Dar)						
40			0.021 ± 0.016							

2. ΞN <=> ∧∧ mixing with the H? Resonance of the H?

$\Xi^{-}p => \Lambda\Lambda + 28 MeV$

PS-E522 (KEK) C.J.Yoon et al., PRC 75 (2007) 022201(R)

C. J. YOON et al.

(b)

FIG. 2. Typical image of the $\Lambda\Lambda$ in the scintillating fiber active target.

were compressed and stored in the Versa Module Eurocard (VME)-based data-acquisition system [11]. The track width defined by the distribution of each pixel of a track weighted by its brightness around the fitted straight line was 296 μ m for a minimum ionizing particle.

In total, 45934 (K^- , K^+) events in the K^+ momentum region, $0.9 \le P_{K^+} \le 1.3$ GeV/c, were scanned by human eyes and classified according to their topological categories, as

6/9

Ξ⁻Be =(?)=>᠕

What is the lightest $\Lambda\Lambda$ hypernucleus?

Production of ${}_{\Lambda}{}_{\Lambda}^{4}$ H Hypernuclei J.K.Ahn et al., PRL 87 (2001) 132504

An experiment demonstrating the production of double- Λ hypernuclei in (K^-, K^+) reactions on ⁹Be was carried out at the D6 line in the BNL alternating-gradient synchrotron. The technique was the observation of pions produced in sequential mesonic weak decay, each pion associated with one unit of strangeness change. The results indicate the production of a significant number of the double hypernucleus ${}_{\Lambda\Lambda}{}^{4}$ H and the twin hypernuclei ${}_{\Lambda}{}^{4}$ H and ${}_{\Lambda}{}^{3}$ H. The relevant decay chains are discussed and a simple model of the production mechanism is presented. An implication of this experiment is that the existence of an S = -2 dibaryon more than a few MeV below the $\Lambda\Lambda$ mass is unlikely.

8/9

	()))		25 -	-			
${}^{3}_{\Lambda}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi_{L}^{-}$ (114.3 MeV/c),	(H) 150 U [±] 140		20 - 15 - 1				
${}^{4}_{\Lambda}\mathrm{H} \rightarrow {}^{4}\mathrm{He} + \pi_{H}^{-} \qquad (132.9 \mathrm{~MeV}/c) .$	130		10 - 5 - 7				
	120		0 25 —	1111111111111 -			
$\Lambda_{\Lambda} \stackrel{\text{H}}{\text{H}} \rightarrow \Lambda_{\Lambda} \stackrel{\text{He}}{\text{He}} + \pi_{H} \qquad (\sim 114 \text{ MeV}/c),$ $\Lambda_{\Lambda} \stackrel{\text{He}}{\text{He}} \rightarrow {}^{3}\text{He} + p + \pi_{L}^{-} \qquad (97 \text{ MeV}/c),$	110 , 100		20 - 1 15 - 1				
or	90						
$^{4}_{\Lambda\Lambda} H \rightarrow ^{4}_{\Lambda} He^{*} + \pi_{L}^{-} \qquad (\sim 104 \text{ MeV}/c)$	80	80 90 100 110 120 130 140 150 16	0 100	125 150 100) 125 150		
${}^{4}_{\Lambda}\text{He}^* \rightarrow {}^{3}_{\Lambda}\text{H} + p ,$ ${}^{3}_{\Pi}\text{He}^* \rightarrow {}^{(114.2)}_{\Lambda}\text{M} \text{M} ()$	S=	PL (MeV/c) -2 sticking prob. ~f	ہ ew% fo	o <mark>r Xi captu</mark>	P _π (MeV/c) I re at rest		
$_{\Lambda} H \rightarrow ^{-} He + \pi_{H} $ (114.3 MeV/C).		Momentum correlation of two π^- mesons					

9/9

Summary

p

0. Selecting events with Ξ^- hyperon

S=+2 with e.g. [K+,K+] or [K+,K°-bar] (?)

1. E-scattering

Analysis of off vtx. decayed Ξ - hyperon

2. Resonance of the H dibaryon (?)

Analysis of $\Lambda\Lambda$ invariant mass

3. Lightest $\Lambda\Lambda$ hypernucleus (?)

Check Momentum correlation of two π^- mesons

??? reality ???