Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis

Yoshiyuki Miyachi, Tokyo Tech

Contents

- Fragmentation and parton distribution function
- Resent fragmentation function analysis
- Impact on the proton spin structure analysis
 - Strange quark component and kaon fragmentation
- Quark transversity and Collins fragmentation function
- Fragmentation function analysis in Belle
- Summary

Parton distribution and Fragmentation functions

q(x)

Probability of finding a parton with momentum fraction x of a parent proton q

Deep inelastic scattering (DIS)

 $D_q^h(z)$

Probability of fragmenting to a hadron h with energy fraction z of a parent parton q

Single inclusive anihiration (SIA)

Semi-inclusive DIS

 $\frac{d^{3} \sigma^{h}}{dx \, dz \, dQ^{2}} \propto \sum_{i} e_{q}^{2} q(x, Q^{2}) D_{q}^{h}(z, Q^{2})$ $\frac{d^{3} \Delta \sigma^{h}}{dx \, dz \, dQ^{2}} \propto \sum_{i} e_{q}^{2} \Delta q(x, Q^{2}) D_{q}^{h}(z, Q^{2})$ $z = \frac{P \cdot p_h}{P \cdot a} = \frac{E_h}{v}$

FF and PDF are equally important to analyze high energy process with hadron production

Flavor Tagging:

Hadron carries information on <u>quark flavor</u> through fragmentation function

Excellence

Fragmentation function parametrization

Parametrize functional form:

$$D(z) \propto N_i z^{\alpha} (1-z)^{\beta} \left[1 + \gamma (1-z)^{\delta} \right]$$

N: 2nd moment of D(z)

Constraint: no sensitivity on quark and anti-quark separation weak quark flavor sensitivity (especially for light quarsk: u, d, s) Favored – dis-favored fragmentation $D^{disfav} = (1 - z) \cdot D^{fav}$

Fit the available data from the experiments: Determine the parameters (and possibly their uncertainty)

S. Kretzer
B.A. Kniehl, G. Kramer and B. Pötter
M. Hirai, S. Kumano, T.-H. Nagai, K. Sudoh.
D. de Florian, R. Sassot, M. Stratmann Including Hadron multiplicity in SIDIS and hadron cross-section in p-p (allow to loose some constraint)

Available data for FF analysis

DSS, Phys. Rev. D75, 114010 (2007),

pion	Data	Relative	Data	
Experiment	Data	in fit	fitted	2
Experiment	type	III IIt	inted	X
TPC [15]	Inclusive	0.94	17	18.5
29GeV	"uds tag"	0.94	9	1.9
	"c tag"	0.94	9	5.7
	"b tag"	0.94	9	7.4
TASSO [38]	Inclusive (34 GeV)	0.94	11	30.1
	Inclusive (44 GeV)	0.94	7	20.5
SLD [16]	Inclusive	1.008	28	14.0
	"uds tag"	1.008	17	11.6
	"c tag"	1.008	17	11.1
	"b tag"	1.008	17	33.2
ALEPH [11]	Inclusive	0.97	22	38.3
DELPHI [12]	Inclusive	1.0	17	42.3
	"uds tag"	1.0	17	26.4
	"b tag"	1.0	17	42.8
OPAL [13,14]	Inclusive	1.0	21	9.2
	"u tag"	1.10	5	11.8
	"d tag"	1.10	5	9.0
	"s tag"	1.10	5	49.8
	"c tag"	1.10	5	38.3
	"b tag"	1.10	5	73.0
HERMES [17]	π^+	1.03	32	67.4
	π^-	1.03	32	120.8
PHENIX [18]	π^0	1.09	23	76.4
STAR [22]	$\pi^0, \langle \eta \rangle = 3.3$	1.05	4	3.4
	$\pi^0, \langle \eta \rangle = 3.7$	1.05	5	9.8
BRAHMS [21]	$\pi^+, \langle \eta \rangle = 2.95$	1.0	18	28.2
	$\pi^-, \langle \eta \rangle = 2.95$	1.0	18	43.0
Total			392	843.7

Phys. Rev. Lett. 76, 074033 (2007)

kaon Experiment	Data type	Relative normalization in fit	Data points fitted	χ^2
TPC [15] 29GeV Inclusive		0.94	12	9.5
SLD [16]	Inclusive	0.983	18	14.4
	"uds tag"	0.983	10	14.4
	"c tag"	0.983	10	17.2
	"b tag"	0.983	10	15.2
ALEPH [11]	Inclusive	0.97	13	12.3
DELPHI [12]	Inclusive	1.0	12	1.0
	"uds tag"	1.0	12	2.3
	"b tag"	1.0	12	4.3
OPAL [14]	"u tag"	1.10	5	6.5
	"d tag"	1.10	5	9.9
	"s tag"	1.10	5	36.8
	"c tag"	1.10	5	44.9
	"b tag"	1.10	5	18.6
HERMES [17]	K^+	1.03	24	15.0
	K^{-}	1.03	24	79.3
STAR [20]	K_S^0	0.95	14	40.0
BRAHMS [21]	$K^+, \langle \eta \rangle = 2.95$	1.0	18	28.8
	$K^-, \langle \eta \rangle = 2.95$	1.0	18	21.5
Total			232	394.1

Total

New Hadrons with Various Flavors, Dec 6-7, 2008, Nagoya Yoshiyuki Miyachi, Tokyo Tech

TDK Excellence

Pion Fragmentation Analysis

DSS, Phys. Rev. D75, 114010 (2007)

Data used for kaon fragmentation

DSS, Phys. Rev. D75, 114010 (2007)

Extracted kaon fragmentation function

DSS, Phys. Rev. D75, 114010 (2007)

Impact on the nucleon spin analysis

- strange quark spin component Δs

Helicity distribution function Δq

Proton spin problem

Updated results on g_1 and Δs

Semi-inclusive DIS

 $\vec{l} + \vec{N} \rightarrow l' + h + X$ **Structure Function** $F_i(x, Q^2), g_i(x, Q^2)$ (E', p') >(E, p) Parton Distribution $q(x, Q^2), \Delta q(x, Q^2)$ u (\mathbf{u}) Ν d P = (M, 0)Fragmentation $D_q^h(z, Q^2)$ $p_h = (E_h, p_h)$

$$\frac{d^{3}\sigma^{h}}{dx \, dz \, dQ^{2}} \propto \sum_{i} e_{q}^{2}q(x, Q^{2})D_{q}^{h}(z, Q^{2})$$
$$\frac{d^{3}\Delta\sigma^{h}}{dx \, dz \, dQ^{2}} \propto \sum_{i} e_{q}^{2}\Delta q(x, Q^{2})D_{q}^{h}(z, Q^{2})$$
$$z = \frac{P \cdot p_{h}}{P \cdot q} = \frac{E_{h}}{v}$$

FF and PDF are equally important to analyze high energy process with hadron production

Flavor Tagging:

Hadron carries information on <u>quark flavor</u> through fragmentation function

Excellence

Helicity distribution from QCD fit

D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 101, 072001 (2008)

Belle and Fragmentation function

- Fragmentation function at Belle (on going)
- sqrt(s) ~ 10.52 GeV
 - Cover the lowest scale
 - Gluon FF from scale violation
 - Similar scale to pol. DIS
- Light quarks: u, d, s
- pion, kaon

Fragmentation function analysis in Belle

- <u>Collins Fragmentation Function</u>
 - Belle collaboration, Phys. Rev. D78 (2008) 032011
 - Transverse momentum dependence: kT
 - Vector meson
- <u>Di-hadron fragmentation function</u>

published
on-going
plan/idea

- <u>Unpolarized Fragmentation function</u>
 - Charged pion, charged kaon, proton
 - sqrt(s) = 10.8 GeV: cover lower Q2 (for gluon), similar Q2 with SIDIS and p-p
 - Other mesons: pi0, eta, f0, phi, Ks,
 - Barions: Lambda, ...

Contents

- Fragmentation Function has been analyzed with e+e- data, SIDIS, and pp data together
- Fragmentation function is important for analysis of high energy scattering with hadron production
 - With DSS kaon FF, $\Delta s > 0$ was obtained in the middle x
 - Neutral pion FF is also important for ΔG . (especially gluon part)
- Fragmentation function analysis at Belle
 - Collins fragmentation (published)
 - Normal fragmentation function analysis (on-going)
 - sqrt(s) = 10.52 GeV, pion, kaon

Quark Transversity and Collins Fragmentation

New Hadrons with Various Flavors, Dec 6-7, 2008, Nagoya Yoshiyuki Miyachi, Tokyo Tech

ΤΟ

Transverse momentum dependent

parton distribution function

Parton

Collins mechanism

Collins Asymmetry at HERMES

HERMES Collaboration, arXiv:0706.2242

 ϕ_S

ΤΟΚ

Pursuing Excellence

Collins asymmetry at Belle

Extracted transversity and Collins FF

Alexei Prokudin @ SPIN2008

ΤΟΚ

Pursuir

na Excellence

Quark tarnsversity

HERMES Multiplicity: pion

DSS, Phys. Rev. D75, 114010 (2007)

Charged pion production in p-p DSS, Phys. Rev. D75, 114010 (2007)

Extracted pion fragmentation function DSS, Phys. Rev. D75, 114010 (2007)

Kaon production in pp scattering DSS, Phys. Rev. D75, 114010 (2007)

Helicity distribution function

LO extraction

HERMES Collaboration, Phys. Lett. B666 (2008) 446-450

FF choice in Siverse function analysis

Data used in helicity distribution

D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 101, 072001 (2008)

Experiment	Data fitted	χ^2
DIS: EMC, SMC, COMPASS,		
E142, E143, E154, E155,		
HALL-A, CLAS, HERMES	234	186
SIDIS π^{\pm} , K^{\pm} , h^{\pm} : SMC,		
HERMES, COMPASS	189	166.5
<i>p</i> - <i>p</i> 200 GeV, π^0 : PHENIX (in part prel.)	20	21.3
<i>p</i> - <i>p</i> 62 GeV, π^0 : PHENIX (prel.)	5	3.1
p-p 200 GeV, jet: STAR (in part prel.)	19	15.7
TOTAL:	467	392.6

Gluon polarization in polarized protonproton scattering

DSSV results....

$$E_H \frac{d^3 \sigma}{dp_H^3} = \sum_{a,b,c} f_a \otimes f_b \otimes d\hat{\sigma}^c_{ab} \otimes D_c^H,$$

na Excellence

Pursui

Quark flavor sensitivity

Belle collaboration, Phys. Rev. D78 (2008) 032011

ΓΟΙ

Excellence

New Hadrons with Various Flavors, Dec 6-7, 2008, Nagoya Yoshiyuki Miyachi, Tokyo Tech

normalized rate

SU(3) violation and impact on Δs

$$\underbrace{\chi QM \text{ calculation:}}_{(X. \text{ Song et. al, Phys. Rev. D55 (1997) 2624-2629})}_{SU(3) \text{ symmetry: } \Delta s = -0.1}_{SU(3) \text{ breaking: } \Delta s = -0.05}$$

New Hadrons with Various Flavors, Dec 6-7, 2008, Nagoya Yoshiyuki Miyachi, Tokyo Tech

TOK

Pursuing Excellence

Extracted Transversity and models

(x)b [⊥]∇ x 0.3 0.2 0.1 0 -0.1 0.2 0.4 0.6 0.8 X

New extraction is close to most models.

Barone, Calarco, Drago PLB 390 287 (97)

- Soffer et al. PRD 65 (02)
- (01) Korotkov et al. EPJC 18
- Schweitzer et al. PRD 64 (01)
- Wakamatsu, PLB B653 (07)
- Pasquini et al., PRD 72 (05)
- Cloet, Bentz and Thomas PLB 659 (08)
- This analysis.

Alexei Prokudin @ SPIN2008