Detector R&D: J-PARC-E16

K. Ozawa (Univ. of Tokyo) for the E16 collaboration

Condensates and Spectrum

We can link condensates and vector meson spectrum.

The relation is established robustly.

T.Hatsuda and S. Lee, PRC 46 (1992) R34

Average of Imaginary part of $\Pi(\omega^2)$ vector meson spectral function

Next Experiment

vector meson spectral function Calculate amout of quark concensate using © CD sum rule.

Spectrum

Mædab@adculation measured spectra

Mass Shift: $m_{\phi} = m_0 (1 - \alpha \rho/\rho_0) \text{ for } \alpha = 0.03$

2008/12/06

Need large statics

New Spectrometer

5 times larger acceptance for pairs
Cope with 10 times larger beam intensity!!
2 times larger cross section
Total, 100 times higher statistics!!

Major components

Prototype is made and being tested

Required Resolution

- Momentum and mass resolution are evaluated based on KEK knowledge.
 - Position resolution:
 - 300 μm for E325
 - 50 μm, 100 μm, 200 μm, and 300 μm for J-PARC
 - Multiple scattering
 - Radiation length of detectors are increased for GEM foils
 - Larger acceptance for J-PARC

To have the improved mass resolution, Target Resolution is 100 mm It can be achieved 0.7 mm pitch and strip charge information.

GEM Tracker

Collaboration with KEK

- To cover large acceptance and cope with high counting rate, 3 layers of GEM trackers are used.
- Similar to COMPASS detector

- Challe $(d=50\mu m)$
 - Lon
 - Med / / w
 - Rea

Rate issu Cupper 5 kH with d=5µm

-PARC height

COMPASS detector is working Up to 25 kHz/mm 2 (400 μ m pitch) GEM detector will work

Nagoya, K. Ozawa

COMPASS detector (NIM A535, 314)

GEM and Read out

 GEM foils made in Japan (SciEnergy)

Collaboration with KEK

R&D @ Tokyo

Purpose:

Develop a GEM tracker Evaluate specifications Position resolution Efficiency Rate dependence

Current Configuration:

3 GEM foils
p-10 gas
2-D strip
Both side
0.8 μm pitch
Copy of KEK's

Signals

We can see signals from both sides.

Signal from bottom surface is distorted.

Already known problem by KEK group.

Strips on top surface

Strips on bottom surface

Check with X-ray

Beam test is done.

Results of resolution will be appeared soon.

Gas Cherenkov Detector

- Electron Identification using gas cherenkov
 - Used for low momentum electron
 - Mirror and PMT, traditionally
 - Difficulty for Large acceptance

Requirement of large acceptance at J-PARC E16 experiment

Photo Cathode + GEM for amplification No Mirror

CSI photo-cathod

2008/12/06

- UV sensitive (6 eV, 200nm)
- High quantum efficiency

Nagoya, K. Ozawa

Measurements of Q.E.

- We got a consistent result with existing data.
 - Based on this measurements, the number of photoelectron with 84 cm long radiator is estimated as 65.

Old beam test @ Hiroshima

Results

Inverse field, light shield on, dE/dx (1mm) Only Inverse field, light shield off, dE/dx (1mm) + Light

Summary

- For J-PARC E16, a GEM based spectrometer is proposed to cope with high interaction rate and have large acceptance.
- R&D has started for J-PARC at Tokyo and RIKEN.
 GEM tracker with 2-D strip read out is being developed. First brief result of R&D is appeared.
- Cherenkov counter using CSI photocathode and GEM readout is the essential part to extend the acceptance. R&D is on-going.

Issue: counting Rate

- Interaction rate is 10⁶ Hz at KEK (x10 @J-PARC)
- However, beam halo can not be ignored
- For example, actual condition at KEK is following.
 - 350 kHz at the most forward cell of Drift Chamber
 - At radius of 200 mm and the horizontal angle of 6 °
 - 3.5mm width and 220 mm height
 - Mostly from beam halo
- Extrapolate to J-PARC
 - 10 times higher beam intensity
 - shorter beam-extraction duration
 - 3.5 MHz is expected.
 - 10 times finer segments are required
 - 0.7 mm pitch x 100mm height

That's the main issue for spectrometer design.

We have to develop the detector which cope with 10 times larger rate.

Detectors in high counting

- MWPC limitation
 - − Wire spacing: 1~2 mm
 - Gain dropping @ high rate
- Micro strip gas chamber
 - Discharge problem
- Micromegas
 - Another candidate
- GEM
 - Flat gain up to 10⁵ Hz/mm²
 - I like flexibility of configuration
 - Good characteristics of signal
 - Signal is generated by electron
 - Not by ion
 - No ion tail and pole cancellation electronics

I took these ideas and figures from F. Sauli's presentation at XIV 20 GIORNATE DI STUDIO SUI RIVELATORI VIIIa Gualino 10-13 Febbraio 2004

What can be achieved?

Pictures from PHENIX

Globe box

Evaporate machine

2008/12/06 Nagoya, K. Ozawa 22

CSI photo cathode

- Transmissive type is used
 - Suitable with GEM
 - Relatively high quantum efficiency
 - Low photon feedback

In reality

