Detector R&D: Belle PID upgrade

- Barrel
 - TOP counter
- Endcap
 - Aerogel RICH

Current Belle

P (GeV/cl

Belle PID upgrade

- PID (K/ π) detectors
 - Barrel PID and Aerogel RICH counters are both Cherenkov ring imaging detectors.
 - dE/dx in drift chamber

Barrel PID detector

 Reconstruct ring image using ~20 photons reflected inside the quartz radiator as a Babar's DIRC.

Utilize 3D information

Arrival position (x,y)

TOP counter

 Difference of propagation time for K/π

4

TOP counter

- Quartz: 255cm^L x 40cm^W x 2cm^T
 - Focus mirror at 47.8deg.
 to reduce chromatic dispersion
- Multi-anode (GaAsP) MCP-PMT

- Linear array (5mm pitch), Good time resolution (<~40ps)
- \rightarrow Measure Cherenkov ring image with timing info.

Expected performance

K/π separation power

GaAsP photo-cathode + Focusing mirror

Beam test

- At Fuji beam line in June (e⁻ 2GeV)
- Using real size quartz and MCP-PMT
 - MCP-PMT: Multi-alkali p.c., C.E.=60%

top 2D Entries 349084 Beam test results Ring Image Similar with Simulation Number of photons nhit N~20; as expected Data Tail due to EM shower in triggers Time resolution Simulation Main part; expected time resolution Rate of tail seems large. Not in MCP-PMT and readout # of hits/event beam center simulation center Simulation Data 45 event t 240 [tail part: **45.3 ± 16.9** [%] tail part:17.8 ± 3.1 è 220 ⊧ ъ 40 σ_{main}~52.0 ± 7.4ps [%] σ_{main} \sim 53.3 ± 1.8ps 100 [|] 10 E

25ps/count

25ps/count

Aerogel RICH

- Endcap PID upgrade
 - For $4\sigma K/\pi$ sep. for 4 GeV/c
- Proximity focusing RICH
 - Silica aerogel
 - ∎ n~1.05
 - Photon detector
 - Single photon sensitive
 - A few mm² pixel channels
 - Tolerant to magnetic field

Hybrid Photon Detector

- Developed with Hamamatsu
 - Two options: HPD or HAPD

Package	72x72 mm ²	
# of pixels	12x12(6x6/chip)	
Pixel size	5x5 mm ²	
Effective area	64 %	
	PD	APD
Gain	2000	20000
Cd	10 pF	80 pF
I(leak)	10 nA	30 nA

4 avalanche diodes in one HAPD

Total gain = bombardment gain($\sim 10^3$) x avalanche gain(~ 40)

Beam test

- At Fuji beam line in June (e⁻ 2GeV)
- Prototype counter with 6 HAPDs

- Measure
 - Ring image
 - Number of photons
 - Cherenkov angle resolution

Cherenkov ring and angle

20mm-thick aerogel of n=1.045

4.6 photoelectrons per ring detected, which is consistent with previous beam test results done in 2005

Focusing scheme

Tested focusing aerogel radiator scheme

Summary

Many R&Ds in progress!

Barrel PID

- Focusing DIRC, TOP, iTOP options
- Cherenkov ring imaging with position and precise timing (<50ps)</p>
- Quartz + Photon detector
 - Developing MCP-PMT (TTS<40ps for single photon)
- TOP Prototype shows the expected performance.
 - Expected ring image, N_{photon}~20, time resol.~50ps
- Endcap PID
 - Aerogel-RICH
 - Proximity focusing RICH with silica aerogel
 - Several photo detector options
 - HAPD, MCP-PMT, MPPC
 - With focusing aerogel prototype, reach $4\sigma K/\pi$ sep. for 4GeV/c