"New exotics" from the $\widetilde{U}(12)_{SF}$ -scheme

Tomohito MAEDA¹, Kenji YAMADA¹, Shin ISHIDA^{2,*)}, and Masuho ODA³

¹Department of Engineering Science, Junior College Funabashi Campus, Nihon University, Funabashi 274-8501, Japan

²Research Institute of Science and Technology, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan ³School of Science and Engineering, Kokushikan University, Tokyo 154-8515, Japan

(Received December 31, 2008)

In this talk, we have discussed the pionic / kaonic transitions of charmed mesons in the framework of $U(12)_{SF} \otimes O(3, 1)_L$ -classification scheme of hadrons, which is proposed and developed in recent years by our collaboration-group. The $U(12)_{SF}$ contains, in addition to the conventional non-relativistic $SU(6)_{SF}$ -group $(SU(6)_{SF} \supset SU(2)_{\sigma} \otimes SU(3)_F)$, the new symmetry group $SU(2)_{\rho}$. By inclusion of this extra $SU(2)_{\rho}$ -spin freedom it leads to the possible existence of some multiplets of "exotic" hadrons, which do not exist in the ordinary non-relativistic quark model.

Possible assignments for observed and predicted I = 0 charmed mesons and their calculated pionic / kaonic decay widths are summarized in the following table.

To evaluate the above transition, we have used the effective quark-pion/kaon coupling vertex adopted in the chiral quark model with suitable modification in conformity with our scheme. In the actual calculation, we have taken the zero-recoil approximation considered to be effective for relevant application. For the isospin non-conserving decay processes, we use $\epsilon^2 \approx 0.65 \times 10^{-4}$ as a suppression factor, multiplying the absolute squared amplitudes.

In conclusion, it is indicated that the $D_{s0}(2317)$, $D_{s1}(2460)$, and $D_{s1}(2700)$ are good candidates of $c\bar{s}$ chiral states through their observed mass and decay properties. The existence of other broad chiral states should be checked in future experiments.

-			-		
Mesons	$^{2S+1}L_J; j_q^P$	$(ho_3(c), ar{ ho}_3(ar{s}))$	decay channel	$\Gamma^{ ext{theor.}}$	$\Gamma^{\text{exper.}}$
D_s	${}^{1}S_{0}; \frac{1}{2}^{-}$	(+,+)	-	-	-
D_s^*	${}^{3}S_{1}; \frac{1}{2}^{-}$	(+,+)	$D_s \pi^0$	$0.0031 \mathrm{keV}$	$< 110 \mathrm{KeV}$
$D_{s0}(2317)^*$	${}^{1}S_{0}; \frac{1}{2}^{+}$	(+, -)	$Ds \pi^0$	$9.1 \mathrm{keV}$	<3.8
$D_{s1}(2460)$	${}^{3}S_{1}; \frac{1}{2}^{+}$	(+, -)	$Ds^* \pi^0$	$5.1 \mathrm{keV}$	< 1.68
$D_{s0} (\sim 2480)^*$	${}^{3}P_{0}; \frac{1}{2}^{+}$	(+,+)	D K	~ 330	
$\overline{D_{s1}(\sim 2550)}$	$P_1; \frac{1}{2}^+$	(+,+)	$D^* K$	$\sim \! 178$	
$\overline{D_{s1}(2536)}$	$P_1; \frac{3}{2}^+$	(+,+)	$D^* K$	0.22	< 2.3
$D_{s2}(2573)$	${}^{3}P_{2}; \bar{\frac{3}{2}}^{+}$	(+,+)	$D K, D^* K$	16 + 1 = 17	20 ± 5
$D_{s1}(2700)$	$^{1}P_{1};^{-}$	(+, -)	$D K, D^* K$	34 + 50 = 84	$110{\pm}27$
$D_{s1}(\sim 2700)$	${}^{3}P_{1};$ -	(+, -)	$D K, D^* K$	$\sim 126 + 54 = 180$	

Table I. Classification of $c\bar{s}$ mesons in $U_{SF} \otimes O(3,1)_L$ -scheme. Pionic / kaonic transition widths (in MeV) are also given. Predicted (, but experimentally missing) states are underlined. Experimental values are taken from the Particle Data Group 2008.

^{*)} Senior Research Fellow.