Open- and Hidden-Charm Tetra-Quark Mesons and Related $-\mathrm{D_{s0}^{+}}(2317),\,\mathrm{D_{0}}(2400)\,\,\mathrm{and}\,\,\mathrm{X}(3872)-$

Kunihiko Terasaki

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan

Tetra-quark mesons can be classified into the following four groups,

$$\{qq\bar{q}\bar{q}\} = [qq][\bar{q}\bar{q}] \oplus (qq)(\bar{q}\bar{q}) \oplus \{[qq](\bar{q}\bar{q})\} \oplus (qq)[\bar{q}\bar{q}], \quad (q=u,d,s,c), \tag{1}$$

in accordance with the difference of symmetry property of their flavor wavefunctions, where parentheses and square brackets denote symmetry and anti-symmetry of flavor wavefunction, respectively, under exchange of flavors between them. The above classification is again classified into $\bar{\bf 3}_c \times {\bf 3}_c$ and ${\bf 6}_c \times \bar{\bf 6}_c$ of the color $SU_c(3)$. The force between two quarks is attractive when they are of $\bar{\bf 3}_c$, while the corresponding force is repulsive when they are of $\bar{\bf 6}_c$. Therefore, we take the $\bar{\bf 3}_{\bf c} \times {\bf 3}_{\bf c}$ state as the lower lying one. In this case, narrow widths of heavy tetra-quark mesons can be understood by a small overlap of color and spin wavefunctions. However, the same mechanism does not work in light tetra-quark mesons because of the non-perturbative property of QCD at a low energy scale, so that they can be broad.

From the experimental constraint,

$$R(D_{s0}^{+}(2317))_{\text{exp}} = \frac{\Gamma(D_{s0}^{+}(2317) \to D_s^{*+}\gamma)}{\Gamma(D_{s0}^{+}(2317) \to D_s^{+}\pi^{0})} \bigg|_{\text{exp}} < 0.059,$$
(2)

it is seen that the interaction causing the decay in the denominator is much stronger than the electromagnetic interaction. Because such a strong interaction is the well-known isospin conserving strong interaction, $D_{s0}^{+}(2317)$ should be an iso-triplet state. Such a charm-strange state cannot be the conventional $\{c\bar{s}\}$ system but can be realized by a tetra-quark state, for example, $\hat{F}_{I}^{+} \sim [cn][\bar{s}\bar{n}]_{I=1}$, (n=u,d). On the other hand, its iso-singlet partner $\hat{F}_0^+ \sim [cn][\bar{s}\bar{n}]_{I=0}$ decays dominantly into radiative channels because the kinematically allowed $D_s^+\pi^0$ is an iso-triplet state and isospin non-conserving interactions are much weaker than the electromagnetic interaction as is well-known. X(3872) decays into two different final states with opposite G-parities, (and C-parities when isospin is conserved),

$$\frac{Br(X(3872) \to \pi^+ \pi^- \pi^0 J/\psi)}{Br(X(3872) \to \pi^+ \pi^- J/\psi)} = 1.0 \pm 0.4 \pm 0.3.$$
 (3)

This is puzzling because the strong interaction conserves G-parity (i.e., C-parity and isospin). However, the above puzzle could be solved, if X(3872) consists of two (approximately) degenerate states with opposite G-parities. Such a situation can be realized by $\{[cn](\bar{c}\bar{n}) \pm (cn)[\bar{c}\bar{n}]\}_{I=0}$ included in the last two terms of Eq.(1). Widths of the scalar mesons $D_0^* \sim \{c\bar{n}\}$ and $D_{s0}^{*+} \sim \{c\bar{s}\}$ are also studied by comparing with that of $K_0^*(1430)$ which

has been considered as the scalar $\{c\bar{s}\}$ meson. Their widths are estimated to be $\Gamma(D_0^*) \sim 50$ MeV and $\Gamma(D_{s0}^*) \sim 40$ MeV. The former $\Gamma(D_0^*)$ is much smaller than the width $\Gamma(D_0) \sim 200 - 300$ MeV of the broad enhancement just below the peak of D_2^* in $D\pi$ mass distribution which was observed by the Belle collaboration. But it was not smooth. Therefore, more studies including the following items by the Belle collaboration are awaited:

- Observation of neutral and doubly charged partners \hat{F}_I^{++} and \hat{F}_I^0 of the above $\hat{F}_I^+ = D_{s0}^+(2317)$ in B decays. (Their production in e^+ - e^- annihilation would be suppressed as was discussed in hep-ph/0804.2295.)
- Confirmation of the observation of the charm-strange scalar meson $D_{s0}^+(2317)[D_s^{*+}\gamma]$ in the $D_s^{*+}\gamma$ channel which is (approximately) degenerate with $D_{s0}^+(2317)$. It implies the existence of iso-singlet partner \hat{F}_0^+ of \hat{F}_L^+ .
- Search for the conventional D_{s0}^{*+} in DK channels of B decays. Its width would be $\Gamma(D_{s0}^{*+}) \sim 40$ MeV.
- More precise re-analysis of the $D\pi$ mass distribution just below the D_2^* peak and observation of its structure containing the conventional D_0^* and the very narrow non-strange partner \hat{D} of the above \hat{F}_0^+ and \hat{F}_I^+ . In this way, various models providing artificially large rates $\gtrsim 10$ keV for isospin non-conserving decay could be killed.
- Search for the decay $X(3872) \to J/\psi \pi^0 \pi^0$ to confirm the isospin conservation in X(3872) physics.
- Search for the $\omega \gamma$ decay of hidden-charm scalar meson $\hat{\sigma}^c \sim [cn][\bar{c}\bar{n}]_{I=0}$. This is the dominant decay and its rate is $\Gamma(\hat{\sigma}^c \to \omega \gamma) \sim 100$ keV in our model, while a unitarized chiral model predicts that the corresponding meson X(3700) decays dominantly into the $J/\psi\gamma$ state and $\Gamma(X(3700) \to J/\psi\gamma) \sim 20$ keV.