15pG107-9

高時間分解能縦方向ビームプロファイルモニターを用いた RFQによる加速ミューオンのバンチ構造測定

<u>須江祐貴</u>^A, 飯嶋徹^{A, B}, 飯沼裕美^C, 石田勝彦^D, 居波賢二^A, 牛澤昂大^E, 大谷将士^F, 河村成肇^F, 北村遼^G, 近藤恭弘^G, 齊藤直人^F, 下村浩一郎^F, 竹内佑甫^H, 中沢雄河^C, 長谷川和男^G, 二ツ川健太^F, 三宅康博^F, 三部勉^F, 森下卓俊^G, 安田浩昌^I, 山崎高幸^F, 四塚麻衣^A

<u>名大理</u>^A, 名大KMI^B, 茨大理工^C, 理研^D, 総研大^E, 高工研^F, JAEA^G, 京大理^H, 東大理^I

ミューオン双極子モーメントの精密測定

J-PARCで精密測定実験を目指す

J-PARCで精密測定実験を目指す

J-PARC muon g-2/EDM 精密測定実験

従来の実験(BNL・FNAL)とは異なる手法を用いた精密測定

ミューオン線形加速の現状と課題

技術的課題

ミューオンの高周波加速は前例がない

低エネルギー・低強度のミューオンビーム診断技術が未確立

2017年10月 ミューオンRF加速を達成 2017年12月 横方向ビームプロファイルの測定を実施

残る課題と本研究

現状=加速実証段階

加速器間のビーム調整が不適切だとエミッタンスは増大する →低速部における時間方向の ビームプロファイル(バンチ構造)モニターを開発 →低速の加速ミューオンのバンチが測定可能か検証

ミューオン加速実証試験セットアップ

89 keVのRF加速<u>Mu⁻(µ+e⁻e⁻)</u>バンチを生成

- ・エネルギーの単一化
- 背景事象(µ+)との分離

ミューオン加速実証試験セットアップ

予想されるバンチ構造と問題

バンチモニター製作のために、測定するバンチを考える

実証段階のため加速Mu⁻レートは1.3 mHz →2000回の入射で加速Mu⁻は1つ このバンチのどこかにやってくる

予想されるバンチ構造への対策

バンチ構造のシミュレーション

粒子輸送シミュレーションを行った結果 およそ σ=0.47 ns のバンチが生成される このバンチが測定可能なモニターを構築する

MCPを用いたバンチ構造測定モニター

MCP(マイクロチャンネルプレート)を用いて **到達時間を<u>高時間分解能</u>で測定**

バンチモニターのためにマルチアノード状に設計

バンチ構造測定モニターの時間分解能測定

検証試験に向けて電子源を用いたテストベンチを構築し <u>σ=0.204±0.004 ns</u>の時間分解能を達成

電子源の時間分解能が十分でないため、この値は分解能の上限値となる

バンチ構造のシミュレーション

モニターによって測定されたバンチは分解能でなまって検出される 幅σ=0.47 nsのバンチを測定するためには十分な分解能

加速Mu-抽出のための事象選別

ミューオンがMu⁻生成標的に到着してからの飛行時間で加速Mu⁻を抽出

加速Mu⁻の信号波高は背景事象(陽電子)よりも高い →高い信号波高の事象を抽出

バンチ構造の測定結果

測定結果は σ=0.58±0.12_{stat.}-0.04_{sys.} nsとなった →RF加速ミューオン(Mu⁻)のバンチ測定に成功

まとめ

J-PARCで Muon g-2/EDM の精密測定実験の準備を進行中

・ 先行の実験とは異なるコンセプトで精密測定を行う

マイクロチャンネルプレートを用いた高時間分解能モニターに よってσ=0.204±0.004 ns以下の時間分解能を達成 幅 σ=0.58±0.12_{stat.}-0.04_{sys.} nsのバンチ測定に成功 > 開発中のモニターによる測定手法の有効性を検証した > ミューオンRF加速のより直接的な実証となった

今後、

実機ビームラインでの測定に向け、モニターの詳細な
性能評価を行う