Current Status of ATLAS Endcap Muon Trigger System

On behalf of ATLAS Japan TGC Group

Contents

- 1. Introduction
- 2. Assembly and installation of TGC
- 3. Readout test at assembly site
- 4. Full Big Wheel Test Plan
- 5. Summary

Introduction

ATLAS Detector

General purpose detector for LHC

- Length:44m
- Diameter:25m
- Weight: 7000t

Data taking will be started from September 07.

ATLAS Trigger System

3 level trigger system

- LVL1 decision based on data from calorimeters and muon trigger chambers; synchronous at 40 MHz; bunch crossing identification (BCID)
- LVL2 uses Regions of Interest (identified by LVL1) data (ca.
 with full granularity from all detectors
- 3. <u>Event Filter</u> has access to full event and can perform more refined event reconstruction

Level1 Muon Trigger System

- TGC provides
 - Bunch ID
 - muon hit position
 - Pt of muon
 - EC toroidal magnet
 - 2 station coinc.
 - \rightarrow low Pt trigger (>6Ge
 - 3 station coinc.
 - \rightarrow high Pt trigger (>200

Thin Gap Chamber

Performance requirements

- (1) Detection efficiency > 99% \rightarrow Trigger
- ② Signal response time ~ 25nsec → BC ID
- ③ Stable operation for more than 10 years under high rate environment (~kHz/cm²)
- (4) Radiation Tolerance (~0.6C/cm)

Structure of TGC

- Similar to MWPC
 - ${\ensuremath{\bullet}}$ Wire : 50µm gold-plated W
 - Anode-Cathode Gap : 1.4mm
 - Wire-Wire Gap : 1.8mm
 - 2-dimentional readout (wire, strip)
 - Cathode plane: carbon (~MΩ/cm²)
 - Trapezoidal shape (~2m²)

Operation condition

- Gas : CO₂ + n-Pentane (55:45)
- High Voltage : +3.0kV
- Operation Mode : Limited Proportional
- Gas Gain : ~10⁶

Production of TGC

- Mass production of chambers
 - Total:3,600 chambers (11 types)
 - Produced in Japan, Israel and China.
 - Total channel:~ 320,000 channels
 - Covered area:~ 2,700m²
 - Japanese contribution
 - Total : 3 types, 1,224 chambers (inc. spare)
 - Period : Apr. 2001~Feb. 2005 (48 months)
 - Site : KEK (Fuji experimental hall)

Close chamber

Inspection of TGC

- Chamber performance test in Japan
 - Test Stand at Kobe University
 Period: May 2001 ~ July 2005 (40 months)
 - Check following items using cosmic ray
 - Detection efficiency (5mm x 5mm)
 - Timing distribution
 - Result for Japanese chambers
 - 12 chambers with locally inefficient region.
 - Not transported to CERN
 - Transportation from Kobe to CERN by ship
 - All good chambers were already transport to CERN

Diagram of TGC Electronics

TGC Electronics Modules made in Japan 9/23

Assembly and Installation of TGC

Assembly unit

TGC consists of three wheels We call this "Big Wheels" (BW) Triplet (TGC1) middle doublet (TGC2) pivot doublet (TGC3) Iocated at each end-cap (A-side) Each BW consists of 12 sector TGC1: 18 triplet modules/secto TGC2,3: 22 doublet modules/se \rightarrow 1488 modules in total.

Two Working Areas @ CERN

Sector Assembly Procedure

- 1. Chamber preparation before installation
 - Check gas tightness of chamber
- 2. Assembly in horizontal position
 - Assembly of Al frame for sector
 - Arrangement of cables (signal and LV/HV)
 - Arrangement of gas pipe

Sector Assembly Procedure (cont)

- 3. Assembly in vertical position
 - Chamber installation
- 4. Install on-detector electronics
- 5. Test of sector
 - Check cabling and electronics health
 - Send test pulse to ASD card
 - Apply high voltage to chambers with CO₂ gas flow
 - Test with RI source & cosmic ray

Test Result

- We have checked cabling before installation
 - 12 x TGC1 sectors and 12 x TGC2 ones were tested.
 TGC3 is tested now.
 - Have found some problems and fixed them.
 - insufficient connection
 - cable swapping
 - broken cables
 - electronics failure
 - dead channels on chamber
 - Delay scan method
 - To confirm timing adjustment functionality
 - Take data with changing test pulse delay values with accuracy of sub-nano second

- In TGC1 test, all electronics channels (~30k channels) were checked.
- Only five channels on chambers were found to be dead (0.017%).

Progress of sector assembly

Assembly work is performed in parallel on 2 sites at assembly site.

- We have already tested 12 x M1-C sectors and 12 x M2-C ones.
- Now we are assembling M3-C
 - 4 sectors were already installed.
- M1-A will be assembled from this November using 3rd site.

Installation to ATLAS pit

<u>Schedule</u>

	station	Assembly	Installation
	TGC1	Done	Done
C-side	TGC2	Done	Jan.07 -
	TGC3	In progress	Feb.07 -
A-side		Nov.06 -	Jan.07 -

Built up to a BW

Current Status @ pit

- Assembly and installation of
 - C-side TGC is in progress
 - 1st BW has been fully installed in the pit
 - 2nd BW is ready for installation
 Stocked in assembly site
- Services to be performed in the pit
 - Check distortion of BW
 - Check electronics and DCS
 - Gas, LV/HV and optical fiber
- Installation of A-side TGC will be started from Jan. 07

Future test programs foreseen in the pit

Preparation for the beam collision

- Timing adjustment
 - TGC must make level1 trigger decision at each 40MHz bunch.
- Strategy
 - 1. Before beam collision
 - Timing adjustment is synchronized to 40MHz clock
 - 2. After beam collision
 - Adjust phase between bunch crossing timing and L1A signal.

Pre-run

- Cosmic run
- Single beam halo run
 - → provide trigger signal
 - → need special configuration
 - (1 station coincidence)

Summary & Plan

- Thin Gap Chamber
 - Used as ATLAS Level1 endcap muon trigger chamber
 - Almost chambers were produced and tested their performance.

Assembly and Installation

- TGC modules are assembled to 1/12 sectors.
 - TGC1 and TGC2 for side-C have been assembled.
 - TGC3 are assembled now.
 - TGC1 for side-A will start to be assembled from this November.
- The first Big Wheel station (TGC1) was installed on this September.
 - TGC2 will be installed in Jan. 07.
- Sector Test
 - To check on-detector electronics and cablings.
 - TGC1 and TGC2 for side-C have been checked.
- We continue sector tests for remaining sectors in cooperation with sector assembly.

Future Plan

- We will start full big wheels test from Mar.07
 - Timing adjustment
 - Cosmic & beam halo run

		station	Assembly	Installation
		TGC1	Done	Done
	C-side	TGC2	Done	Jan.07 -
		TGC3	In progress	Feb.07 -
	A-side		Nov.06 -	Jan.07 -

Backup slide

Result for RI source & cosmic ray test 23/23

RI source test
 1MBq ⁶⁰CO was used.
 CO₂ flow, 2.8kV?
 Only very few hot channel was found.

Cosmic ray test
 Random trigger
 100kHz clock

Before beam collision

Procedure

- 1. Set test pulse delays properly.
- Confirm necessary signal delay values by checking test pulse data timing adjustment is synchronized to 40MHz clock

After beam collision

