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Abstract

We have searched for the lepton flavor violating decays τ− → �−K0
S (� = e or μ), using a data sample of 281 fb−1 collected with the Belle

detector at the KEKB e+e− asymmetric-energy collider. No evidence for a signal was found in either of the decay modes, and we set the following
upper limits for the branching fractions: B(τ− → e−K0

S) < 5.6 × 10−8 and B(τ− → μ−K0
S) < 4.9 × 10−8 at the 90% confidence level. These

results improve the previously published limits set by the CLEO Collaboration by factors of 16 and 19, respectively.
© 2006 Elsevier B.V. All rights reserved.

PACS: 11.30.Fs; 13.35.Dx; 14.60.Fg
1. Introduction

Lepton flavor violation (LFV) is allowed in many exten-
sions of the Standard Model (SM), such as Supersymmetry
(SUSY) and leptoquark models. In particular, lepton flavor vi-
olating decays with K0

S mesons are discussed in models with
heavy singlet Dirac neutrinos [1], R-parity violation in SUSY
[2,3], dimension-six effective fermionic operators that induce
τ–μ mixing [4]. Experiments at the B-factories allow searches
for lepton flavor violating decays with a very high sensitivity.
The best upper limits of B(τ− → e−K0

S) < 9.1 × 10−7 and
B(τ− → μ−K0

S) < 9.5 × 10−7 at the 90% confidence level
were set by the CLEO experiment using 13.9 fb−1 of data [5].

In this Letter, we report a search for the lepton flavor violat-
ing decays τ− → �−K0

S (� = e or μ)1 using 281 fb−1 of data
collected at the Υ (4S) resonance and 60 MeV below it with
the Belle detector at the KEKB e+e− asymmetric-energy col-
lider [6].

* Corresponding author.
E-mail address: miya@help.phys.nagoya-u.ac.jp (Y. Miyazaki).

1 Unless otherwise stated, charge conjugate decays are included throughout
this paper.
The Belle detector is a large-solid-angle magnetic spectrom-
eter that consists of a silicon vertex detector (SVD), a 50-layer
central drift chamber (CDC), an array of aerogel threshold
Čerenkov counters (ACC), a barrel-like arrangement of time-
of-flight scintillation counters (TOF), and an electromagnetic
calorimeter comprised of CsI(Tl) crystals (ECL), all located
inside a superconducting solenoid coil that provides a 1.5 T
magnetic field. An iron flux-return located outside of the coil
is instrumented to detect K0

L mesons and to identify muons
(KLM). The detector is described in detail elsewhere [7].

Particle identification is very important in this measurement.
We use particle identification likelihood variables based on the
ratio of the energy deposited in the ECL to the momentum mea-
sured in the SVD and CDC, the shower shape in the ECL, the
particle range in the KLM, the hit information from the ACC,
the measured dE/dX in the CDC and the particle’s time-of-
flight from the TOF. For lepton identification, we form a like-
lihood ratio based on the electron probability P(e) [8] and the
muon probability P(μ) [9] determined by the responses of the
appropriate subdetectors.

For Monte Carlo (MC) simulation studies, the following
programs have been used to generate background events: KO-
RALB/TAUOLA [10] for τ+τ−, QQ [11] for BB̄ and con-
tinuum, BHLUMI [12] for Bhabha events, KKMC [13] for

mailto:miya@help.phys.nagoya-u.ac.jp
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e+e− → μ+μ− and AAFH [14] for two-photon processes.
Since the QQ generator does not include some rare processes
that potentially contribute to final states with a K0

S meson, we
generated special samples of e+e− → D∗+D(∗)−, a process
that was recently observed by the Belle Collaboration [15]. Sig-
nal MC is generated by KORALB/TAUOLA. Signal τ decays
are two-body and assumed to have a uniform angular distribu-
tion in the τ lepton’s rest frame. The Belle detector response
is simulated by a GEANT 3 [16] based program. All kine-
matic variables are calculated in the laboratory frame unless
otherwise specified. In particular, variables calculated in the
e+e− center-of-mass (CM) frame are indicated by the super-
script “CM”.

2. Data analysis

We search for τ+τ− events in which one τ (signal side)
decays into �K0

S (K0
S → π+π−), while the other τ (tag side)

decays into one charged track (with a sign opposite to that of
the signal-side lepton) and any number of additional photons
and neutrinos. Thus, the experimental signature is:

{
τ− → �−(= e− or μ−) + K0

S

(→ π+π−)}

+ {
τ+ → (a track)+ + (

nTAGγ � 0
) + X(missing)

}
.

All charged tracks and photons are required to be reconstructed
within a fiducial volume, defined by −0.866 < cos θ < 0.956,
where θ is the polar angle with respect to the direction oppo-
site to the e+ beam. We select charged tracks with momenta
transverse to the e+ beam pt > 0.1 GeV/c and photons with
energies Eγ > 0.1 GeV.

Candidate τ -pair events are required to have four charged
tracks with a zero net charge. Events are separated into two
hemispheres corresponding to the signal (three-prong) and tag
(one-prong) sides by the plane perpendicular to the thrust
axis [17]. The magnitude of the thrust is required to be larger
than 0.9 to suppress the qq̄ continuum background. The K0

S is
reconstructed from two oppositely-charged tracks in the signal
side that have an invariant mass 0.482 GeV/c2 < Mπ+π− <

0.514GeV/c2, assuming a pion mass for both tracks. The
π+π− vertex is required to be displaced from the interaction
point (IP) in the direction of the pion pair momentum [18].
In order to avoid fake K0

S candidates from photon conver-
sions (i.e. γ → e+e−), the invariant mass reconstructed by
assigning the electron mass to the tracks, is required to be
greater than 0.2 GeV/c2. The signal side track not used in
the K0

S reconstruction is required to satisfy the lepton iden-
tification selection. The electron and muon identification cri-
teria are P(e) > 0.9 with p > 0.3 GeV/c and P(μ) > 0.9
with p > 0.6 GeV/c, respectively. After the event selection de-
scribed above, most of the remaining background comes from
generic τ+τ− and continuum events that contain a real K0

S me-
son.

To ensure that the missing particles are neutrinos rather than
photons or charged particles that fall outside the detector ac-
ceptance, we impose additional requirements on the missing
momentum vector, �pmiss, calculated by subtracting the vector
sum of the momenta of all tracks and photons from the sum
of the e+ and e− beam momenta. We require that the magni-
tude of �pmiss be greater than 0.4 GeV/c and that its direction
point into the fiducial volume of the detector, as shown for
the τ− → μ−K0

S mode in Fig. 1(a) and (b). The total visible
energy in the CM frame, ECM

vis , is defined as the sum of the en-
ergies of the K0

S candidate, the lepton, the tag-side track (with
a pion mass hypothesis) and all photon candidates. We require
ECM

vis to satisfy the condition: 5.29 GeV < ECM
vis < 10.0 GeV

(see Fig. 1(c)). Since neutrinos are emitted only on the tag
side, the direction of �pmiss should lie within the tag side of the
event. The cosine of the opening angle between �pmiss and the
tag-side track in the CM system, cos θCM

tag-miss, is therefore re-
quired to be greater than 0 (see Fig. 1(d)). For all kinematic
distributions shown in Fig. 1, reasonable agreement between
the data and background MC is observed. In order to suppress
background from qq̄ (q = u,d, s, c) continuum events, the fol-
lowing requirements on the number of the photon candidates
on the signal and tag side are imposed: nSIG � 1 and nTAG � 2,
respectively.

Finally, the correlation between the reconstructed momen-
tum of the �K0

S system, p�KS , and the cosine of the opening an-
gle between the lepton and K0

S , cos θ�KS is employed to further
suppress background from generic τ+τ− and continuum events
via the requirements: cos θ�KS < 0.14 × log(p�KS − 2.7) + 0.7,
where p�KS is in GeV/c (see Fig. 2). While this condition re-
tains 99% of the signal, 99% of the generic τ+τ− and 84%
of the uds continuum background are removed. Following all
the selection criteria, the signal detection efficiencies for the
τ− → e−K0

S and τ− → μ−K0
S modes are 15.0% and 16.2%,

respectively.

3. Results

Signal candidates are examined in the two-dimensional plots
of the �−K0

S invariant mass, M�K0
S
, and the difference of their

energy from the beam energy in the CM system, �E. A sig-
nal event should have M�K0

S
close to the τ -lepton mass and �E

close to 0. For both modes, the M�K0
S

and �E resolutions are
parameterized from the MC distributions around the peak with
bifurcated Gaussian shapes to account for initial state radia-
tion. These Gaussian have widths σ

high/low
M

eK0
S

= 6.2/7.4 MeV/c2

and σ
high/low
�E = 20/26 MeV for the τ− → e−K0

S mode, and

σ
high/low
M

μK0
S

= 6.1/5.9 MeV/c2 and σ
high/low
�E = 19/23 MeV for

the τ− → μ−K0
S mode, where the “high/low” superscript indi-

cates the higher/lower side of the peak.
We blind a region of ±5σM

�K0
S

around the τ mass in M�K0
S

and a region of −0.5 GeV < �E < 0.5 GeV so as not to bias
our choice of selection criteria. Fig. 3 shows scatter-plots for
data and signal MC samples distributed over ±15σ in the
M�K0

S
–�E plane. Most of the surviving background events

in both modes come from D± → π±K0 and D± → �±νK0

S S
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Fig. 1. Kinematic distributions used in the event selection after K0
S mass and muon identification requirements: (a) the momentum of the missing particle; (b) the

polar angle of the missing particle; (c) the total visible energy in the CM frame; (d) the opening angle between the missing particle and tag-side track in the CM
frame. The signal MC distributions are indicated by the filled histograms, the total background including τ+τ− and qq̄ is shown by the open histogram, and solid
circles are data. While the signal MC (τ− → μ−K0

S) distribution is normalized arbitrarily, the data and background MC are normalized to the same luminosity.
Selected regions are indicated by arrows from the marked cut boundaries.
Fig. 2. Scatter-plots of (a) signal MC (τ− → μ−K0
S), (b) continuum MC,

(c) generic τ+τ− MC events and (d) data on the pμKS vs cos θμKS plane.
Selected regions are indicated by curves with arrows.

decays. The remaining continuum backgrounds in the τ− →
μ−K0

S mode are combinations of a true K0
S meson and a fake

lepton.
To optimize our search sensitivity, we select an elliptically
shaped signal region of minimum area with the same signal ac-
ceptance as that of a rectangular box corresponding to ±5σ in
the MC resolution for the M�K0

S
–�E plane. The signal efficien-

cies after all requirements are 11.8% for the τ− → e−K0
S and

13.5% for the τ− → μ−K0
S , respectively.

As there are few remaining MC background events in the
signal ellipse, we estimate the background contribution using
the M�K0

S
sideband regions defined by rectangular areas be-

side the signal ellipse shown in Fig. 3(a) and (b). Extrapo-
lation to the signal region assumes that the background dis-
tribution is flat in M�K0

S
. We find the expected background

in the ellipse to be 0.2 ± 0.2 events for both modes. Finally,
we uncover the blinded region and find no data events in the
signal region of the τ− → e−K0

S and τ− → μ−K0
S modes

(see Fig. 3(a) and (b)). Since no statistically significant excess
of data over the expected background in the signal region is
observed, we apply a frequentist approach to calculate upper
limits on the signal yields [19]. The resulting limits for the
signal yields at 90% confidence level, s90, are 2.23 events in
both modes. The upper limits on the branching fraction be-
fore the inclusion of systematic uncertainties are then calculated
as

(1)B
(
τ− → �−K0

S

)
<

s90

2εB(K0
S → π+π−)Nττ

,
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Fig. 3. Scatter-plots of data in the M
�K0

S
–�E plane: (a) and (b) correspond to the ±15σ area for the τ− → e−K0

S and τ− → μ−K0
S modes, respectively. The data

are indicated by the solid circles. The filled boxes show the MC signal distribution with arbitrary normalization. The elliptical signal region shown by a solid curve
is used for evaluating the signal yield. The vertical dashed lines denote the boundaries of the blind regions, while the rectangular areas beside the signal region are
used to estimate the expected background in the elliptical region.
where B(K0
S → π+π−) = 0.6895 ± 0.0014 [20] and Nττ =

251 × 106 is the number of τ -pairs produced in 281 fb−1

of data. We obtain Nττ using σττ = 0.892 ± 0.002 nb, the
e+e− → τ+τ− cross section at the Υ (4S) resonance calculated
by KKMC [13]. The resulting values are B(τ− → e−K0

S) <

5.5 × 10−8 and B(τ− → μ−K0
S) < 4.8 × 10−8.

The dominant systematic uncertainties on the detection sen-
sitivity: 2εNττB(K0

S → π+π−) come from K0
S reconstruc-

tion and tracking efficiencies. These are 4.5% and 4.0%, re-
spectively, for both modes. Other sources of the systematic
uncertainties are: the trigger efficiency (0.5%), lepton iden-
tification (2.0%), MC statistics (0.3%), branching fraction of
K0

S → π+π− (0.2%) and luminosity (1.4%). Assuming no cor-
relation between them, all these uncertainties are combined in
quadrature to give a total of 6.5%.

While the angular distribution of τ− → �−K0
S decay is ini-

tially assumed to be uniform in this analysis, it is sensitive to
the lepton flavor violating interaction structure [21]. The spin
correlation between the τ lepton in the signal and that in the tag
side must be considered. A possible nonuniformity was taken
into account by comparing the uniform case with those assum-
ing V −A and V +A interactions, which result in the maximum
possible variations. No statistically significant difference in the
M�K0

S
–�E distribution or the efficiencies is found compared to

the case of the uniform distribution. Therefore, systematic un-
certainties due to these effects are neglected in the upper limit
evaluation.

Upper limits on the branching fractions at the 90% confi-
dence level including these systematic uncertainties are calcu-
lated with the POLE program without conditioning [22]. The
resulting upper limits on the branching fractions at the 90%
confidence level are

B
(
τ− → e−K0

S

)
< 5.6 × 10−8,

B
(
τ− → μ−K0

S

)
< 4.9 × 10−8.
4. Discussion

In the R-parity violating SUSY scenario, there are three
kinds of terms (λ, λ′ and λ′′) with a total of 45 couplings. In this
model, τ− could decay into �−K0

S via tree-level scalar neutrino
exchange by the λλ′ couplings. Using our results, the limits on
the products λλ′ as a function of the scalar neutrino mass (Mν̃ )
are given as [2],

|λi31λ
′
i12| (i = 1,2), |λi31λ

′
i21| (i = 2,3)

< 4.5 × 10−4 (Mν̃/100 GeV/c2)2 for τ− → e−K0
S,

|λi32λ
′
i12| (i = 1,2), |λi23λ

′
i21| (i = 1,3)

< 4.1 × 10−4 (Mν̃/100 GeV/c2)2 for τ− → μ−K0
S,

where i is the generation number. These bounds are more strin-
gent than the previous bounds obtained in R-parity violating
models from τ− decay including a pseudoscalar meson [2,3].

The improved sensitivity to rare τ lepton decays achieved
in this work can be used to constrain the new physics scale for
the dimension-six fermionic effective operators involving τ–μ

flavor violation, motivated by neutrino oscillations [4]. From
our upper limit for the branching fraction of the τ− → μ−K0

S
decay, lower bounds of 36.2 and 37.2 TeV can be obtained for
the axial-vector and pseudoscalar operators, respectively.

5. Conclusion

In conclusion, we have searched for the lepton flavor vio-
lating decays τ− → �−K0

S (� = e or μ) using data collected
with the Belle detector at the KEKB e+e− asymmetric-energy
collider. We found no signal in either mode. The following up-
per limits on the branching fractions at the 90% confidence
level are obtained: B(τ− → e−K0

S) < 5.6 × 10−8 and B(τ− →
μ−K0

S) < 4.9 × 10−8. These results improve the search sen-
sitivity by factors of 16 and 19, respectively, compared to the
previous limits obtained by the CLEO experiment.
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