The 1st Result of Global Commissioning of the ATALS Endcap Muon Trigger System in ATLAS Cavern

Takuya SUGIMOTO (Nagoya University)
On behalf of TGC Group

~ Contents ~

- 1. ATLAS Level1 Trigger
- 2. Endcap muon trigger system
- 3. Global Commissioning Run (Milestone-3 run)
- 4. Results
- 5. Summary

LHC-ATLAS Experiment

ATLAS Level1 Trigger

- Characteristics
 - Rate reduction: 1GHz → 100kHz
 - Decision time: < 2.5μs
 - Only raw electronic signals are used
- Muon Trigger System
 - Endcap (1.05<|h|<2.4)
 - Thin Gap Chamber (TGC)
 - Barrel (|h|<1.05)
 - Resistive Plate Chamber (RPC)
 - Air-core super-conducting toroidal magnet (Endcap and Barrel)

Thin Gap Chamber

Structure

- Similar to MWPC
- Wire: 50μm gold-plated Tungsten
- Anode-Cathode Gap : 1.4mm
- Wire-Wire Gap : 1.8mm
- 2-dimentional readout (wire, strip)
- Cathode plane: carbon ($\sim M\Omega/cm^2$)
- Trapezoidal shape (~2m²)

Operation condition

- Gas : CO₂ + n-C₅H₁₂ (55:45)
- High Voltage : +2.9kV
- Operation Mode : Limited Proportional
- Gas Gain : ~10⁶

Production and Inspection

In total 3600 chambers were produced in
 Japan (KEK), Israel (Weizmann) and China (1999 – 2006)

Endcap Muon Trigger System

- Big Wheel
 - Triplet (TGC1), middle doublet (TGC2) and pivot doublet (TGC3)
 - Each BW consists of 12 sectors → 72 sectors are required.
- Measurement items
 - muon hit position
 - Rough Pt momentum → trigger if Pt > 6GeV
- 1. Connect the IP and hit point on TGC3 → Infinite momentum track
- 2. Hit signal on TGC1&2 is found in window1&2. → Pt > 6GeV

TGC Assembly at CERN

1/12 sector Assembly (Oct. 2005 ~ Aug. 2007)

(detail → T. Kubota's poster)

TGC Big Wheel Assembly (Jul. 2006~)

→ 5 wheels assembled

Installation of Electronics Modules

ASICs for TGC Electronics TGC1 TGC2 TGC3 **VME** HSC(VME) PS-Board on TGC chambers (Big Wheel edge) **ASD** Trig **SLB ASIC** delay H-Pt 3/4 Coin. **BCID** wire Readout PP **JRC** delay **BCID** H-Pt Read DCS-PS strip **Doublets** ASD **H-Pt Board** PP **SLB ASIC** delay 2/3 Coin. **BCID** Readout ntrol crate **ASD** PP **JRC** delay **BCID** CCI DCS-PS **Triplet TTC**vi Service PP CAN TTC signal fanout TTCrq ASD to PS-Boards **PS** Board card 9 I Commissioning of the ATLAS Endcap vern

Global Commissioning

TGC for Global Commissioning Run

<Main purpose of Global Commissioning>

- Provide *Trigger Signal* to whole sub-detectors
 → mainly MDT EndCap
- Read out TGC data via ROD-ROS link
- 3. Join TGC segment to the ATLAS central DAQ system

TGC Electronics

Setup for Global Commissioning On TGC chambers Big Wheel edge Counting Room TGC1 HSC(VME) crate VME64 crates Trigger crate **Specially designed** Trigger **CTM** modules instead of HPT Sector ► MUCTPI Logic Readout crate Readout 1-station coincidence **ROD** → ROB **ASD** PP **SLB ASIC** SSW delay 2/3 Coin. BCID| Readout Control crate PP **JRC** delay Control **BCID** CCI **HSC** DCS-PS **Triplet** TTC CTP TTCvi Service PP CAN DCS LCS **TTCrq**

Commissioning Trigger Module (CTM)

Functionality

- 11 FPGAs
 - XILINX SPARTAN XC2S50E
 - 10 are used for Rx (LVDS).
 - Take all OR, mask any inputs
 - 1 is used for Tx (NIM).
- CPLD: VME control.
 - XILINX XC2C256P

Purpose

- Trigger output is asserted by all trigger matrices on SLB ASIC.
- Usable to give 1-station trigger signal
 - → It is impossible for HPT
- Various trigger pattern by input mask
 - wire only / strip only / wire & strip

Local Trigger Path Big Wheel edge Counting Room On TGC chambers TGC1 No logic HSC(VME) crate VME64 crates **No LUT** Trigger crate **Fixed Pt CTM** Sector Logic Readout crate 1-station coincidence **ROD** L₁A **ASD** PP **SLB ASIC** delay SSW 2/3 Coin. **BCID** Readout Control crate PP **JRC** delay **BCID** CCI **HSC** DCS-PS **Triplet TTCvi** Service PP CAN TTCrq

Vth vs Trigger Rate

- good separation between S/N with threshold of 100mV
- finally, we got stable 8Hz of trigger from FULL TGC1 sector9 and fed them to CTP (they found it in their system)

Control Path On TGC chambers Big Wheel edge Counting Room TGC1 HSC(VME) crate VME64 crates • CCI-HSC link Trigger crate Optical communication module • CCI: VME Slave Sector Logic HSC: VME Master • JRC (Jtag Route Controller) Readout crate **ROD ASD SLB ASIC** PP delay 2/3 Coin. **BCID** Readout JRC JTAG Control crate PP delay **BCID** HSCCCI-HSC Link CO DCS-PS (optical) **Triplet TTCvi** Service PP CAN DCS LCS Control **SBC**

TTCrq

Reset

TTC signal fanout

to PS-Boards

Global Trigger Path Big Wheel edge Counting Room On TGC chambers TGC1 No logic HSC(VME) crate VME64 crates **No LUT** Trigger crate **Fixed Pt CTM** Sector Logic **MUCTPI** Readout crate **ROD ASD CTP** PP **SLB ASIC** delay SSW 2/3 Coin. **BCID** Readout Control crate PP **JRC** delay L1A **BCID** CCI **HSC** Clock DCS-PS **Triplet TTCvi** Service PP CAN TTC signal fanout TTCrq L1A Clock **MDT-EC** to PS-Boards

TDC Distribution of MDT

→ Provide Trigger to whole ATLAS system!!

Track Reconstruction by MDT

Readout Path Big Wheel edge Counting Room On TGC chambers TGC1 HSC(VME) crate VME64 crates Trigger crate Local readout system **CTM** Sector Special dump module for SSW Logic data (spy mode) Used for quick check w/o ROD Readout crate Readout **ROD** ► ROB **ASD SLB ASIC** PP SSW delay 2/3 Coin. Local BCID| Readout Readout Control crate PP **JRC** delay BCID CCI **HSC** DCS-PS **Triplet** TTCvi **CTP** Service PP CAN TTC signal fanout TTCrq to PS-Boards L1A, Clock

Measurement of L1A latency

Hit Profile for cosmic-ray test

- 2/3 coincidence (wire)
- Vth = 100mV
- Gas: CO₂ 100%
- HV: 2.8kV

- first data taken by local Readout path
- chambers are working fine
- We are triggering cosmic-muons
- trigger & readout path are working fine !!

Summary

- Provide trigger signal to ATLAS global DAQ system
 - -TGC1 sector was used.
 - 1station coincidence → CTM board instead of HPT board
 - Cosmic ray muons are triggered successfully in ATLAS cavern.
 - Trigger & Readout path are working fine.
 - Measured latency is consistent with estimated value (1.9μsec)
 - MDT reconstructed the cosmic muon trajectory using TGC trigger.
- Plan toward Physics Run
 - Extend number of operational sectors
 - 3station coincidence run → done during the latest commissioning run
 - -Timing Adjustment between stations.
 - Beam halo & single beam run

Full system operation should be tested before starting physics run!!

Backup slides

Trigger Logic

Multiplicity Distribution (events triggered by TGC)

