Recent results on τ decays from Belle

K.Hayasaka (Nagoya Univ.)

Contents

- 1. Introduction
- 2. hadronic τ decays
- 3. τ LFV decays
- 4. summary

2007/10/22 Towards the Precise Prediction of CP violation

Introduction

Precise measurement hadronic τ decay

- τ is an unique lepton that can decay into hadrons.
- τ decay provides a good test for low energy QCD.
- Chiral theory with vector meson dominanceCVC

LFV search on τ decay

- Observation of LFV is a clear signature of New Physics!
- It is expected that t is most strongly connected to NP because τ has the heaviest mass among leptons.

2007/10/22 Towards the Precise Prediction of CP violation

Recently, **KEKB** delivered more than 720fb⁻¹ (world record!) while PEP-II reached around 500fb⁻¹

1fb⁻¹ corresponds to 1.1 million bb pairs.

B-factory and τ **physics**

A B-factory is also a τ-factory!

- σ(ττ)~0.9nb/σ(bb)~1.1nb at 10.6GeV
- Almost same number of $\tau^+\tau^-$ -pairs is produced as that of bb-pairs!

Almost all of the recent results related to τ decay are reported from B-factories! PDG2006 $\Gamma(e^-\gamma)/\Gamma_{\text{total}}$

 Γ_{149}/Γ

lest of lepton family number conservation.					
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<1.1 × 10 ⁻⁷	90	AUBERT	06C BABR	232 fb $^{-1}$, $E_{\rm cm}^{ee}$ = 10.6 GeV	
\bullet \bullet \bullet We do not ι	use the follow	wing data for avera	ages, fits, lim	its, etc. • • •	
$< 3.9 imes 10^{-7}$	90	HAYASAKA	05 BELL	86.7 fb $^{-1}$, E_{cm}^{ee} =10.6 GeV	
$< 2.7 \times 10^{-6}$	90	EDWARDS	97 CLEO		
$< 1.1 \times 10^{-4}$	90	ABREU	950 DLPH	1990–1993 LEP runs	
$< 1.2 \times 10^{-4}$	90	ALBRECHT	92ĸ ARG	$E_{\rm cm}^{ee} = 10 { m GeV}$	
$< 2.0 \times 10^{-4}$	90	KEH	88 CBAL	$E_{\rm cm}^{ee} = 10 { m GeV}$	
$< 6.4 \times 10^{-4}$	90	HAYES	82 MRK2	$E_{cm}^{ee} = 3.8-6.8 \text{ GeV}$	

2007/10/22 Towards the Precise Prediction of CP violation

Number of τ pairs

Numbers of τ pairs used for recent analysis

2007/10/22 Towards the Precise Prediction of CP violation

hadronic τ decays

$\tau^- \rightarrow \phi \kappa^- v_{\tau}$ study

This mode has not been observed before our analysis. This analysis is performed with 401fb⁻¹ data sample. B-factory makes us to measure this mode!

signal side

e

 e^+

tag side

Events selections

 $\tau^{\pm} \rightarrow \phi (\mathbf{K}/\pi) {}^{\pm}\nu (\phi \rightarrow \mathbf{K}^{+}\mathbf{K}^{-}) \& \tau^{\pm} \rightarrow \mathbf{I}^{\pm}\nu \nu$

1-3 topology (KK(K/π)+ℓ)
Nγ=0 @signal side
Nγ<2 @tag side
lepton @tag
K-ID : φ→K⁺K⁻

Signal yield is evaluated by counting the # of phi-mesons in KK mass distribution.

^{2007/10/22} Towards the Precise Prediction of CP violation

Evaluation of Br.

Solved the equations to obtain Br's.

$$\mathcal{B} = \frac{N_{\phi K \nu} = N_{\tau} \mathcal{B} \epsilon_1 + N_{\tau} \mathcal{B}' \epsilon'_1}{N_{\phi \pi \nu}}$$
$$\mathcal{B} = \frac{\epsilon'_2 N_{\phi K \nu} - \epsilon'_1 N_{\phi \pi \nu}}{N_{\tau} (\epsilon_1 \epsilon'_2 - \epsilon'_1 \epsilon_2)}$$

 $Br(\tau \rightarrow \phi K_V) = (4.05 \pm 0.25) \times 10^{-5}$ $Br(\tau \rightarrow \phi \pi_V) = (6.05 \pm 0.71) \times 10^{-5}$

> Other contributions not considered yet. It is rather a maximum value of Br.

Systematic uncertainties

Luminosity	1.4%
τ -pair cross-section	1.3%
Trigger efficiency	1.1%
Track finding efficiency	4.0%
Lepton-ID	3.2%
Kaon-ID/fake	3.1%
Fitting parameter (Γ)	0.2%
MC statistics	0.5%
$B(\phi \to K^- K^+)$	1.2%
Total	6.5%

Branching fraction

$Br(\tau \rightarrow \phi K_V) = (4.05 \pm 0.25 \pm 0.26) \times 10^{-5}$

$\tau \rightarrow \kappa_s \pi \nu_\tau$ study

Contents, % Mode Largest Br among decays with 1 K, so it makes dominant contribution to $\tau \to K_S \pi \nu$ 79the s-quark mass sensitive total strange hadronic spectrum function. $\tau \to K_S \pi K_L \nu$ 9 $\tau \to K_S \pi \pi^0 \nu$ $\mathbf{4}$ $\tau \to K_S K \nu$ $\mathbf{2}$ $\tau \rightarrow 3\pi\nu$ 5**Events selections** 1 $non-\tau\tau$ For the K_S candidate: Ks. • $\Delta Z_{1,2} < 1.5 \text{ cm}$ • $cos(\vec{P}_{\perp}, \vec{r}_{\perp}) \ge 0.95$ • $L_{K_S} > 2 \text{ cm}$ e-351 fb⁻¹, 310 M $\tau\tau$ -pairs e+ • $485 < M_{\pi\pi}(K_S) < 512 \text{ MeV}/c^2$ Mass vs Flight-length 30 e/μ⁻ 53110 signal events ($\varepsilon_{\rm det} \simeq 6\%$) 25 20 L(K_S) cm $(\mu^-, K_S \pi^+)$ $(e^+, K_S \pi^-)$ $|(e^-, K_S \pi^+)|(\mu^+, K_S \pi^-)|$ 15 10 13336 ± 137 | 13308 ± 137 | 13230 ± 134 | 13236 ± 134 $N_{\rm exp}$ 5 $\varepsilon(l, K_S \pi), \%$ 5.70 ± 0.02 | 5.58 ± 0.02 | 5.95 ± 0.02 | 5.89 ± 0.02 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 $M_{\pi\pi}(K_s)$ GeV/c² 15 2007/10/22 Towards the Precise Prediction of CP violation

Two lepton (e,μ) events are used for normalization.

$$\mathcal{B}(K_{S}\pi^{\mp}\nu_{\tau}) = \frac{N(l_{1}^{\pm}, K_{S}\pi^{\mp})}{N(l_{1}^{\pm}, l_{2}^{\mp})} \cdot \left| \frac{\varepsilon(l_{1}^{\pm}, l_{2}^{\mp})}{\varepsilon(l_{1}^{\pm}, K_{S}\pi^{\mp})} \cdot \mathcal{B}(l_{2}^{\mp}\nu_{l}\nu_{\tau}) \right|, \ l_{1,2} =$$

To cancel systematic errors relating evaluations of luminosity and $\sigma(\tau\tau)$, and track reconstruction eff. \rightarrow Uncertainty of 3.4% is reduced.

	0	· · · · · · · · · · · · · · · · · · ·
	K_S detection efficiency	2.5
	$\tau^+\tau^-$ background subtraction	1.6
	$\sum E_{\gamma}^{ m LAB}$	1.0
	Lepton identification efficiency	0.8
	Pion momentum	0.5
e, μ	Non- $\tau^+\tau^-$ background subtraction	0.3
	$\mathcal{B}(l\nu_l\nu_{\tau})$	0.3
	$\frac{\varepsilon(l_1, l_2)}{\varepsilon(l_1, K_S \pi)}$	0.2
	K_S momentum	0.2
	Pion identification efficiency	0.1
•	Total	3.3

Source of the syst. error

$$\mathcal{B}(\tau^- \to K_S \pi^- \nu_\tau) = (0.404 \pm 0.002_{\text{stat}} \pm 0.013_{\text{syst}})\%$$

$$B(\tau^{-} \rightarrow K^{0}\pi^{-}\nu) = 2.0 \times B(\tau^{-} \rightarrow K_{S}{}^{0}\pi^{-}\nu)$$

= 0.808 ± 0.004(stat.) ± 0.026(syst.) %

Contribution.%

Branching fraction $\mathscr{B}(\tau \rightarrow \mathbf{K_s}\pi^- \nu_{\tau})$

2007/10/22 Towards the Precise Prediction of CP violation

K*(892) mass&width

 $M(K^{*}(892)^{-}) = 895.47 \pm 0.20(\text{stat.}) \pm 0.44(\text{syst.}) \pm 0.59(\text{mod.}) \text{ MeV/c}^{2}$ $\Gamma(K^{*}(892)^{-}) = 42.2 \pm 0.6(\text{stat.}) \pm 1.0(\text{syst.}) \pm 0.7(\text{mod.}) \text{ MeV}$

	$M(K^*(892)^-), MeV/c^2$	$\Gamma(\mathrm{K}^*(892)^-), \mathrm{MeV}$	7 Comments
ALEPH	895 ± 2	55 ± 8	$K^{-}\pi^{0}$, syst. errors not est.
CLEO	896.4 ± 0.9		$K_S \pi^-$, syst. errors not est.
PDG K*±(K* ⁰) 891.66±0.26 (896.00	0 ± 0.25) 50.8 ± 0.9 (50	0.3±0.6)

$\tau \rightarrow \mathbf{K} \eta \nu$, $\mathbf{K} \pi^0 \eta \nu$ (**K***ην), and $\pi \pi^0 \eta \nu$ study

$\eta \rightarrow \gamma \gamma$ yield measurement

Fit data with (signal=Crystal Ball function + BG=second-order polynomial function)

Extract Branching fractions

Consider cross-feed among the decays,

$$N K_{\eta \nu} = 2N_{\tau \tau} \left(B_{K \eta \nu} \cdot \varepsilon_{K \eta \nu}^{K \eta \nu} + B_{K \pi} 0_{\eta \nu} \cdot \varepsilon_{K \pi}^{K \eta \nu} + B_{\pi \tau} 0_{\eta \nu} \cdot \varepsilon_{\pi \tau}^{K \eta \nu} \right)$$

$$N K_{\pi} 0_{\eta \nu} = 2N_{\tau \tau} \left(B_{K \eta \nu} \cdot \varepsilon_{K \eta \nu}^{K \pi} + B_{K \pi} 0_{\eta \nu} \cdot \varepsilon_{K \pi}^{K \eta \eta \nu} + B_{\pi \tau} 0_{\eta \nu} \cdot \varepsilon_{\pi \tau}^{K \eta \eta \nu} \right)$$

$$N \pi \sigma_{\eta \nu} = 2N_{\tau \tau} \left(B_{K \eta \nu} \cdot \varepsilon_{K \eta \nu}^{\pi \tau} + B_{K \pi} 0_{\eta \nu} \cdot \varepsilon_{K \pi}^{\pi \tau} 0_{\eta \nu} + B_{\pi \tau} 0_{\eta \nu} \cdot \varepsilon_{\pi \tau}^{K \eta \eta \nu} \right)$$

$$(\eta \text{-yield}) \cdot (q \overline{q} \text{-tothers}) \qquad \text{Cross-feed rates} \qquad \text{Detection efficiencies}$$

	Efficiencies (ε's) i	Efficiencies (ε 's) include B($\eta \rightarrow \gamma \gamma$).		
Selection	Κην	Κπ0ην	$\pi\pi^0\eta u$	
Κην	9.41 × 10⁻³	3.71 × 10 ⁻⁴	1.50 × 10⁻⁵	
$K \pi^0$ ην	1.14 × 10 ⁻⁴	3.46 × 10 ⁻³	7.09 × 10⁻⁵	
$ππ^0$ ην	1.74 × 10 ⁻⁵	2.32×10^{-4}	4.71 × 10 ⁻³	

	η-yield	qq	others	Κην	Κπ⁰ην	$ππ^0$ ην
Κην	1387±43 (ev)	30.6 ± 15.6	1.1 ± 0.2		15.1 ± 3.8	18.0 ± 1.0
$Kπ^0ην$	270 ± 33	27.0 ± 8.5	1.2 ± 0.4	16.0 ± 0.9		85.3 ± 4.6
$\pi\pi^0\eta u$	5959 ± 105	212 ± 29	71.6 ± 20	2.4 ± 0.1	9.4 ± 2.4	

 $\pi^{-}\pi^{0}\pi^{0}\eta\nu, \quad \pi^{-}\pi^{+}\pi^{-}\eta\nu$ Towards the Precise Prediction of CP violation

2007/10/22

10/22 Towards the Precise Prediction of CP violation

Systematic uncertainties

	K	Κην		ππ⁰ην
	(η→γγ)	(η→πππ)		
contaminations of $K\eta\nu$	—	_	0.6	0.0018
contaminations of $K\pi^0\eta u$	0.3	0.4	—	0.042
contaminations of $\pi\pi^0\eta u$	0.075	0.1	3.3	—
contaminations of $\pi\pi^0\pi^0\eta u$	—	—	—	0.4
contaminations of qq	1.5	1.5	6.0	0.5
K/p ID	3.3	2.8	2.2	1.0
lepton ID	2.3	2.6	2.8	2.6
tracking	1.3	3.3	1.3	1.3
luminosity	1.6	1.6	1.6	1.6
π^0 detection	—	2.0	2.0	2.0
π^0 veto	2.8	—	2.8	2.8
signal MC	0.5	1.3	1.7	0.7
$B(\eta{ o}\pi^-\pi^+\pi^0)$	İ —	1.8	_	—
Total	5.6	6.1	8.9	5.0

Branching fractions

preliminary

	Our results		
Κην (η→γγ)	$(1.61 \pm 0.05 \pm 0.09) \times 10^{-4}$		
$(\eta \rightarrow \pi^- \pi^+ \pi^0)$	$(1.65 \pm 0.16 \pm 0.10) \times 10^{-4}$		
$K\eta\nu$ combined	$(1.62 \pm 0.10) \times 10^{-4}$		
Κπ ⁰ ην	$(4.7 \pm 1.1 \pm 0.4) \times 10^{-5}$		
$ππ^0$ ην	$(1.39 \pm 0.03 \pm 0.07) \times 10^{-3}$ 23		

Various mass distributions for $\tau \rightarrow \pi \pi^0 \eta \nu$

 $\tau^- \rightarrow \pi^- \pi^0 \eta \nu$ MC is generated based on measured $\sigma(e^+e^- \rightarrow \pi^+\pi^-\eta)$ and CVC theory. Good agreements are found in each distribution.

$\tau \rightarrow \kappa^{*-}$ (892) η ν analysis

With use of $\tau \rightarrow K \pi^0 \eta \nu$ samples,

- Signal-band:0.50 < M $\gamma\gamma$ < 0.58 (GeV/c²)

- Side-bands: 0.43<Myy<0.48, 0.60<Myy< 0.65 (lower and higher sides show a same $M_{K\pi}0\,$ dist.)

- Continuum BG estimated from side-bands.
- K(892)^{*-} peaking BG estimated by MC: τ→ππ⁰ην, τ→K(892)^{*-}ν and qq

K^{*-}(892) **yields**

- Fit data with
- (a) K^{*-} resonance (BW) + BG
- (b) V-A phase-space dist. + BG,
- Continuum (dashed curve): $\chi^2/n.d.f.=1.061$, N_{BG}=427 ± 21 events
- No significant contribution from non-resonant comp. Therefore, we take (a).

						3
		N _{K*}	N _{phase}	$\chi^2/dof.$	prob.	2
	(a)	119 ± 19	-	1.154	0.265	1
	(b)	—	102 ± 21	2.088	0.0008	
8	0000003					

2007/10/22 Towards the Precise Prediction of CP violation

Systematic uncertainties

- ----- /0/ \

	error (%)
peaking BG (ττ)	0.94
peaking BG (qq)	2.4
K/π ID	2.2
lepton ID	2.5
tracking	1.3
luminosity	1.6
π^0 detection	2.0
π^{0} veto	2.8
Signal MC	1.7
Total	6.1

1

Branching fractions B(K^{*- $\eta\nu$)=(1.10±0.19±0.07) × 10⁻⁴ preliminary}

Efficiency (c) include $B(K^{*-} \rightarrow K^{-}\pi^{0})=0.333$, $B(\eta \rightarrow \gamma\gamma)=0.394$, and $B(\tau \rightarrow I_{VV})=0.352$.

Efficiency (%)	K ^{*-} yields	K ^{*-} v BG	qq BG
0.115	119 ± 19	2.3 ± 0.9	6.5 ± 2.3

Summary for $\tau^- \rightarrow \phi \mathbf{K}^- v_{\tau}$

CLEO has reported that the upper limit on Br is (5.4-6.7)x10⁻⁵ at 90% C.L. with 3.1fb⁻¹ data sample at PRD55,R1119.
First measurement is achieved owing to a high statistical 401fb⁻¹ data sample. KEKB factory makes us to have a huge data sample.

•Branching fraction is $(4.05 \pm 0.25 \pm 0.26) \times 10^{-5}$

PLB 643, 5(2006)

Summary for $\tau^- \rightarrow \mathbf{K_s} \pi^- v_{\tau}$

•Ks π^0 mass spectrum is very well represented, including K₀*(800)⁻ and K*(1410)⁻ resonances along K*(892)⁻.

• Highly precise $B(\tau^- \rightarrow K^0 \pi^- \nu)$ measurement is performed.

• High statistical measurement results in different values on Br, M and Γ , compared to PDG07. Need more study.

Summary for $\tau \rightarrow \mathbf{K}$ ην, $\mathbf{K}\pi^0$ ην and $\pi\pi^0$ ην

• Precise $B(\tau \rightarrow K^- \eta \nu; K^- \pi^0 \eta \nu; K^*^- \eta \nu; \pi^- \pi^0 \eta \nu)$ measurements largely improve PDG07 data. • $B(\tau \rightarrow \pi^- \pi^0 \eta \nu)$ agrees with a CVC calculation, 1.5x10⁻³ by Gilman. Also, mass distributions.

preliminary

	Our results	PDG-2007
$B(\tau^{-}\rightarrow K^{-}\eta\nu)$	$(1.62 \pm 0.10) \times 10^{-4}$	$(2.7\pm0.6) \times 10^{-4}$
$B(\tau^- \rightarrow K^- \pi^0 \eta \nu)$	$(4.7 \pm 1.1 \pm 0.4) \times 10^{-5}$	$(1.8\pm0.9)\times10^{-5}$
B(τ [−] →K*(892) [−] ην)	$(1.10 \pm 0.19 \pm 0.07) \times 10^{-4}$	$(2.9\pm0.9)\times10^{-4}$
$B(\tau^- \rightarrow \pi^- \pi^0 \eta \nu)$	$(1.39 \pm 0.03 \pm 0.07) \times 10^{-3}$	$(1.77 \pm 0.24) \times 10^{-3}$

τ **LFV decays**

NP models and τ LFV decays

^{2007/10/22} Towards the Precise Prediction of CP violation

Results for $\tau \rightarrow h_{\gamma}, h_{\gamma}, h_{\gamma}, h_{\gamma}^{0}$ signal data 0.1→μγ,eγ Data: 535fb⁻¹ (GeV) Br(τ \rightarrow µγ)<4.5x10⁻⁸ at 90%C.L. E ₽ -0.2 Br($\tau \rightarrow e\gamma$)<1.2x10⁻⁷ at 90%C.L. (hep-ex/0705.0650 submitted to PLB) -0.3 signal region $\tau \rightarrow e/\mu + pseudoscalar meson (\eta, \eta', \pi^0)$ 1.7 1.75 1.8 1.85 Data:401fb⁻¹ 1.65 $M_{\mu\gamma}$ (GeV/ c^2) Br(τ →lη,lη',l π^{0})<(6.5–16)x10⁻⁸ at 90%C.L. € ©0.2 $\tau \rightarrow \mu \eta (\rightarrow \gamma \gamma)$ (PLB648, 341 (2007)) \Rightarrow Upper limits for LFV τ decays are 0 approaching the $O(10^{-8})$ level -0.2We proceed now to the updated -0.4searches of $\tau \rightarrow 3$ leptons and $\tau \rightarrow IV^{0}(V^{0}=\phi,\omega)$ -0.61.8 1.9 M_{inv} (GeV/c² 1.61.7

$\tau \rightarrow 3$ leptons (1)

Predicted to have large branching fraction in Higgs mediated LFV models

```
We consider 6 modes: \tau \rightarrow e^-e^+e^-,
\mu^-\mu^+\mu^-, e^-\mu^+\mu^-, \mu^-e^+e^-, e^+\mu^-\mu^- and \mu^+e^-e^-
```

```
Previous results at Belle (PLB 598, 103 (2004))
Br<(1.9-3.5)x10<sup>-7</sup> at 90%C.L. (87.1fb<sup>-1</sup>)
(Br<(1.1-3.3)x10<sup>-7</sup> at 90%C.L. (BaBar 91.5fb<sup>-1</sup>))
```


We update the analysis of $\tau \rightarrow 3$ leptons modes using 535fb⁻¹ of data

luminosity is increased by a factor of 6.1 from previous analysis
 optimize event selections for each mode separately taking account of different background compositions

→3 leptons (3)
 Efficiency : 6.0 - 12.5%
 → the same or better than in the previous analysis
 Expected BG : 0.0-0.4 events

We observe no events in the signal region

Mode	Upper limits	
$ au^- o \mu^- \mu^+ \mu^-$	$< 3.4 imes 10^{-8}$	
$ au^- ightarrow e^- e^+ e^-$	$< 3.6 imes 10^{-8}$	
$ au^- ightarrow \mu^- e^+ e^-$	$< 2.8 imes 10^{-8}$	
$ au^- ightarrow e^- \mu^+ \mu^-$	$< 4.3 imes 10^{-8}$	
$ au^- o \mu^+ e^- e^-$	$< 2.1 imes 10^{-8}$	
$ au^- ightarrow e^+ \mu^- \mu^-$	$< 2.4 imes 10^{-8}$	

(Preliminary)

These results are improved by a factor of 4.7-6.8 the best previous values

⇒The most stringent upper limits among LFV τ decays

$f \leftarrow f \leftarrow$				
Mode	Expected BG	N _{obs}	Upper limit @90%C.L.	
τ→μφ	0.11 ± 0.08	1	1.5x10 ⁻⁷	
τ→eφ	0.11 ± 0.08	0	0.8x10 ⁻⁷	
τ→μω	0.20 ± 0.28	0	1.0x10 ⁻⁷	
τ→ e ω	0.00 ± 0.07	1	1.9x10 ⁻⁷	
(Prelimina	ry)			

Summary for LFV search

We update searches for lepton flavor violating τ decays using > 500 fb⁻¹ of data at Belle.

- ⇒ Improved analysis
- ⇒ Increased luminosity

Br($\tau \rightarrow 3$ leptons)<(2.1-4.3)x10⁻⁸@90%C.L.

 $\rightarrow \text{improved}$ by factors of 5-7 the best previous values

 \rightarrow the most stringent upper limits among LFV τ decays

Br(τ→lφ, Iω) < (0.8-1.9)x10⁻⁷ @90%C.L.

 \rightarrow I ϕ : improved by factors of 4.9 and 9.6

 \rightarrow I ω : first search

We provide the highest sensitivities to New Physics via lepton flavor violating τ decays

Summary for this talk

- B-factory is also a τ -factory.
- Belle collaboration has the largest data sample of τ decays in the world:

more than $5 \times 10^8 \tau$ -pairs.

- 2~8 times more precise branching fractions are obtained than those measured before.
- Also, detailed mass distributions can be evaluated.
- Most stringent UL on Br of τ decay is obtained.
- We are reaching to O(10⁻⁸) for all of τ LFV decays.

Belle experiment is the best place to study τ physics!

If you have some good idea for τ physics, please contact us!!