Workshop on timing detectors at Saclay, 8-9 March 2007

Timing properties of MCP-PMT

- Time resolution
- Lifetime
- Rate dependence
- Applications (TOF, TOP)

K.Inami (Nagoya university, Japan)

Introduction

- Photon device for TOP counter
 - Cherenkov ring imaging counter with precise timing measurement (NIM A 440 (2000) 124)
 - Barrel PID upgrade for Super B factory

- Single photon sensitivity
- Good transit time resolution (<50ps)
- Operational under 1.5T B-field
- Position sensitive (~5mm)
- High detection efficiency
- MCP-PMT is a best solution!

MCP-PMT

- Micro-Channel-Plate
 - Tiny electron multipliers
 - Diameter ~10 μ m, length ~400 μ m
 - High gain
 - ~10⁶ for two-stage type
 - \rightarrow Fast time response
 - Pulse raise time ~500ps, TTS < 50ps
 - can operate under high magnetic field (~1T)

MCP-PMT for single photon

• Timing properties under B=0~1.5T parallel to PMT

Burle25

MCP-PMT	HPK6 R3809U-50-11X	BINP8 N4428	HPK10 R3809U-50-25X	Burle25 85011-501
PMT size(mm)	45	30.5	52	71x71
Effective size(mm)	11	18	25	50x50
Channel diameter(µm)	6	8	10	25
Length-diameter ratio	40	40	43	40
Max. H.V. (V)	3600	3200	3600	2500
photo-cathode	multi-alkali	multi-alkali	multi-alkali	bi-alkali
Q.E.(%) (λ=408nm)	26	18	26	24

2007/3/8-9 WS on timing detectors at Saclay

Pulse response

- Pulse shape (B=0T)
 - Fast raise time (~500ps)
 - Broad shape for BINP8
 - Due to mismatch with H.V. supply divider
 - No influence for time resolution
- Gain v.s. B-field
 - Small channel diameter shows high stability against B-field.
 - Explained by relation btw hole size and Larmor radius of electron motion under B-field.

0.2

0

0.4

0.6

0.8

B (T)

6

12

Time response

- TTS v.s. B-field
 - Small channel diameter shows high stability and good resolution.
- TTS v.s. Gain
 - For several HV and B-field conditions
 - 30~40ps resolution was obtained for gain>10⁶
- Hole size need $< \sim 10 \mu m$
 - to get time resolution of ~30ps under 1.5T B-field.

Lifetime

• How long can we use MCP-PMT under high hit rate?

(Nucl. Instr. Meth. A564 (2006) 204.)

- Light load by LED pulse (1~5kHz)
 - 20~100 p.e. /pulse (monitored by normal PMT)

Lifetime - Q.E. -

- Relative Q.E. by
- single photon laser Without Al protection
 - Drop <50% within 1yr.
- With Al protection
 - Long life
 - Not enough for **Russian PMTs**
- Enough lifetime for HPK's MCP-PMT with Al protection layer

Lifetime - Q.E. vs wavelangth -

• Q.E. after lifetime test (Ratio of Q.E. btw. before, after)

- Large Q.E. drop at longer wavelength
- Number of Cherenkov photons; only 13% less (HPK w/AI)
 - Number of generated Cherenkov photon: ~1/ λ^2

Lifetime - Gain -

- Estimate from output charge for single photon irradiation
- <10¹³photons/cm²
 - Drop fast
- >10¹³photons/cm²
 - Drop slowly
- Single photon detection: OK
- Can recover gain by increasing HV

Lifetime - T.T.S. -

- Time resolution for single photon
 - →No degradation!
 - Keep ~35ps

Multi-anode MCP-PMT (1)

1ch	2ch	3ch	4ch	
				-/
<u> </u>				

	Size	27.5 x 27.5 x 14.8 mm		
	Effective area	22 x 22 mm(64%)		
	Photo cathode	Multi-alkali		
	Q.E.	~20%(λ=350nm)		
	MCP Channel diameter	10 μm		
	Number of MCP stage	2		
	Al protection layer	No		
•	Aperture	~60%		
	Anode	4 channel linear array		
	Anode size (1ch)	5.3 x 22 mm		
	Anode gaps	0.3 mm		

SL10

R&D with Hamamatsu for TOP counter

- Large effective area
- Position information

64% by square shape4ch linear anode (5mm pitch)

Multi-anode (2)

- Single photon detection
- Fast raise time: ~400ps
- Gain=1.5x10⁶ @B=1.5T
- T.T.S.(single photon): ~30ps
 @B=1.5T
- Position resoltion: <5mm
- Correction eff.: ~50%
 - Nucl. Instr. Meth. A528 (2004) 768.
- Basic performance is OK!
 - Same as single anode MCP-PMT

Rate dependence

- 5ps TOF
- TOP counter

High resolution TOF

- Structure
 - Small-size quartz (cm~mm length)
 - Cherenkov light (Decay time ~ 0) extremely reduce time dispersion compared to scintillation (τ ~ ns)
 - MCP-PMT (multi-alkali photo-cathode)
 - TTS < 50ps even for single photon gives enough time resolution for smaller number of detectable photons

Beam test

- MCP-PMT (HPK6, R3809U-50-11X)
 - TTS: ~30ps
 - 6µm hole
- Readout electronics
 - σ_{elec.}: 4ps
 - Time-correlated Single Photon Counting Modules (SPC-134, Becker & Hickl GMbH's)
 - CFD, TAC and ADC
 - Channel width = 813fs
 - Electrical time resolution = 4ps RMS

Beam test setup

- 3GeV/c π^- beam
 - at KEK-PS π2 line
- PMT: R3809U-50-11X
- Quartz radiator
 - 10^{\$}x40^zmm with AI evaporation

Beam test setup photo

Beam test result

- With 10mm quartz radiator
 - +3mm quartz window
 - Number of photons ~ 180
 - Time resolution = 6.2ps
 - Intrinsic resolution ~ 4.7ps
- Without quartz radiator
 - 3mm quartz window
 - Number of photons ~ 80
 - Expectation ~ 20 photo-electrons
 - Time resolution = 7.7ps

TOP counter in Super B-factory

TOP counter should be compact!

TOP counter

Cherenkov ring imaging using timing information

 \rightarrow Difference of time of propagation (TOP)

150~200ps from TOP + TOF from IP with precise time resolution (σ ~50ps) for each photon

Chromaticity

- Detection time is depending on the wavelength of Cherenkov light.
 - Due to light propagation velocity depending on the wavelength.
- Time resolution become worse.
 - \rightarrow Separation of TOP ring image become worse.

Focusing TOP

- Chromatic effect makes ~100ps fluctuation for TOP.
- Use λ dependence of Cherenkov angle to correct chromaticity
- \rightarrow Focusing system to measure θ_c
 - $\lambda \leftarrow \theta_c \leftarrow y$ position
 - Reconstruct ring image from 3D information (time, x and y).

 $\theta_c(\lambda) = \cos^{-1}(\frac{1}{n(\lambda)\beta})$

Focusing TOP (2)

Summary

- MCP-PMT studies
 - Good time resolution of ~35ps for single photon
 - Even under B=1.5T
 - Gain ~ 10⁶ with < 10 μ m MCP hole
 - Long lifetime (<10% QE drop) until 3x10¹⁴photons/cm²
 - Gain degradation if $N_{det} > 10^5$ counts/cm²/s
 - Enough performance for TOP counter in super B factory
- Applications
 - TOF counter with quartz
 - 5ps intrinsic time resolution in beam test
 - TOP counter
 - To reduce chromatic error, introduce compact focusing mirror.
 - Focusing type improves π/K separation in Super Belle.