2007/10/15-20 6th International Workshop on Ring Imaging Cherenkov Counters

Development of TOP counter for Super B factory

- Introduction
- Design study
 - PMT property
 - Focusing system
- Summary

K. Inami (Nagoya university)

Introduction

- Developing to upgrade the barrel PID detector
- For Super B factory
 - $L_{peak} \sim 10^{35 \sim 36}/cm^2/s$, 20~100 times higher than present
 - Need to work with high beam BG

e

8.0GeV

- To improve K/π separation power
 - Physics analysis
 - B→ππ/Kπ, ργ, Kνν etc.
 - Flavor tag
 - Full reconstruction

• Target; 4σ for 4 GeV/c

Side view of Super Belle detector

TOP counter

- Reconstruct ring image using ~20 photons on the screen reflected inside the quartz radiator as a DIRC.
 - Photons are detected with photon detectors.

TOP counter

• 2D position information $\rightarrow \frac{Position + Time}{Position + Time}$

Test counter

5

Design

- Quartz: 255cm^L x 40cm^W x 2cm^T
 - Cut at 47.8deg.

to reduce chromatic dispersion

Multi-anode MCP-PMT

- Good time resolution (<~40ps), Linear array (5mm pitch)
- Three readout planes

Chromaticity

- Detection time depending on the wavelength of **Cherenkov photons** 30000 (bs)
 - Worse time resolution

 \rightarrow Propagation velocity depending on λ in the quartz bar

Chromatic dispersion

Variation of propagation velocity depending on the wavelength of Cherenkov photons

- GaAsP photo-cathode ($\leftarrow \rightarrow$ alkali p.c.)
 - Higher quantum-efficiency
 - at longer wavelength less chromatic error

Photon sensitivity at longer wavelength shows the smaller velocity fluctuation.

GaAsP MCP-PMT development

- Square-shape MCP-PMT with GaAsP photo-cathode is developed with Hamamatsu Photonics.
- Prototype
 - GaAsP photo-cathode
 - Al protection layer
 - 2 MCP layers
 - \$\$\phi10\mu\$m hole\$
 - 4ch anodes
 - Slightly large structure
 - Less effective area
- Performance test
 - Time resolution

GaAsP MCP-PMT performance

Wave form, ADC and TDC distributions for single photon

Enough gain to detect single photo-electron

Good time resolution (TTS=35ps) for single p.e.

Focusing TOP

- Remaining chromatic effect makes
 ~100ps fluctuation for TOP.
- Use λ dependence of Cherenkov angle to correct chromaticity
 - \rightarrow Focusing system to measure θ_c
 - $\lambda \leftarrow \theta_c \leftarrow y$ position
 - Reconstruct ring image from 3D information (time, x and y).

Focusing TOP (2) $\Delta \theta_{\rm c} \sim 1.2$ mrad over sensitive λ range $\rightarrow \Delta y \sim 20$ mm (~quartz thickness) • We can measure λ dependence and obtain good separation even with narrow mirror and $\Delta \theta_{\rm c} \sim 1.2 {\rm mrad}$ readout plane, because of long propagation length. Not need focusing block Not need fine readout channels Virtual readout screen Focusing 22mm x 5mm matrix mirror 1850mm

Performance of focusing TOP

• K/ π separation power

GaAsP photo-cathode(+>400µm filter), CE=36%

Mirror test

- Prototype by Okamoto-optics
 - 40x2x2cm, R=5m
 - Attached at the end of quartz bar
- Shape measurement
 - Need continuous mirror image

- Found (4.9 ± 0.2)mm shift
- → Adjusted by re-polishing flat planes

Summary

R&D of TOP counter is in progress!

To install super B factory

Design studies

- To suppress the influence of chromaticity
- GaAsP photo-cathode MCP-PMT
 - Prototype shows the enough performance
 - Gain = 0.64×10^6 , TTS = 35ps for single photon
 - High Q.E. (>40% at 500nm)
- Focusing system
 - Narrow mirror and narrow readout plane
 - Form large virtual readout screen
 - Not need focusing block and fine PMT channels
 - Improved performance (4.3σ for 4GeV/c)
- Prototype production

