Measurement of $|V_{ub}|$ at Belle

Toru Iijima
Nagoya University
for
Belle Collaboration

August 17, 2004
Introduction

|V_{ub}| measurement
- Crucial to test the standard model of the CP violation.
- Both inclusive/exclusive $B \rightarrow X_u \ell \nu$ decays are useful.

Belle explores B tagging technique to extract $B \rightarrow X_u \ell \nu$ in good quality.
- Good signal-to-noise
- Sufficient statistics

In this talk, we report measurements of
- **Inclusive** $B \rightarrow X_u \ell \nu$ with fully reconstructed tag.
- **Exclusive** $B \rightarrow X_u \ell \nu$ with semileptonic decay tag.

Results are preliminary
Inclusive $B \rightarrow X_u l \nu$ w/ Fully Reconstructed Tag

- **Tagging side:**
 - Full reconstruction of B_{tag} using hadronic decay modes.

- **Signal side:**
 - Lepton Detection
 - Neutrino reconstruction using $P_{\text{miss}}, E_{\text{miss}}$.
 - Reconstruction of (m_X, q^2)

```
K → π+ π-
B_{\text{tag}} → D^{(*)}π/ρ \text{ etc.}

\Gamma (4S) → e^- e^+
```

```
B_{\text{sig}} → X_u l \nu

m_X: \text{Hadronic inv. mass}
q^2: \text{Leptonic inv. mass}
```
Full Reconstruction of B_{tag}

- **Reconstructed modes (180 in total)**

 $$B^0 \rightarrow D^{(*)-} + \pi^+ / \rho^+ / a_1^+ / D^{(*)+}$$

 $$\bar{D}^0 \rightarrow 7 \text{ modes}$$

 $$D^- \rightarrow 6 \text{ modes}$$

 $$D^+ \rightarrow 2 \text{ modes}$$

 $$B^+ \rightarrow \bar{D}^{(*)0} + \pi^+ / \rho^+ / a_1^+ / D_S^{(*)+}$$

 $$\bar{D}_S^0 \rightarrow D^+ \gamma$$

- **M_{bc} (beam constrained mass) distribution**

 140fb$^{-1}$ data

 B0 tag.
 1.58 \times 10^5
 eff. = 0.21%
 purity = 47%

 B$^+$ tag.
 2.47 \times 10^5
 eff. = 0.33%
 purity = 50%

 Signal region: $M_{bc} > 5.26 \text{GeV/c}^2$, $-0.2 \text{ GeV} < \Delta E < 0.05 \text{ GeV}$
Reconstruction of Signal Side

Semileptonic lepton selection
- Lepton momentum \(P_l > 1.0 \text{ GeV/c} \)
- Lab. angle \(26 \sim 140\text{deg.} \)
 + \(J/\psi \) veto, conversion veto etc.

Reduction of \(b\to c \) background
- Number of leptons \(N_l = 1 \)
- Total net charge \(\sum Q_i = 0 \)
- Missing mass \(-1.0 < MM^2 < 0.5 \text{ GeV}^2 \)
- Missing mom. Direction \(\cos \theta_{MM} < 0.95 \)
- Number of kaons \(N_{K^+} = N_{KS} = 0 \)

Phase space cut to minimize theory error
\[m_X < 1.7 \text{ GeV/c}^2, \ q^2 > 8 \text{ GeV}^2 \]

※ same as our previous \((m_X, q^2)\) measurement with simulated annealing [PRL 92, 071802 (2004)]
Signal Yield Extraction

- Fit M_{bc} distribution in each m_X region with Gaussian+'Argus' to subtract the combinatorial background in the B_{tag} sample.
- Fit the obtained m_X distribution with expected $b \rightarrow u$ and $b \rightarrow c$ distribution.

$Nb \rightarrow u = 174 \pm 26$

- The number of semileptonic leptons is extracted by similar fitting on M_{bc} before the $b \rightarrow u$ selection cut.

$N_{sl} = (5.07 \pm 0.4) \times 10^4$
Event Distribution in m_X and q^2

- Event distribution in m_X and q^2 with the normalization fixed to the fitting with the coarse bin.

m_X distribution ($q^2 > 8\text{GeV}^2$)

q^2 distribution ($m_X > 1.7\text{GeV}/c^2$)

Inclusive $B \rightarrow X_u l \nu$

- 140fb^{-1}

- Subtracted with the Expected $b \rightarrow c$ bkg.
Partial Branching Fraction

Relative partial branching fraction

\[
\frac{\Delta B(B \rightarrow X_u \ell \nu)}{B(B \rightarrow X \ell \nu)} = \frac{N_{b \rightarrow u}}{N_{sl}} \times F \times \frac{1}{\varepsilon_{sel}^{b \rightarrow u}} \times \frac{\varepsilon_{frec}^{sl}}{\varepsilon_{frec}^{b \rightarrow u}} \times \frac{\varepsilon_{l}^{sl}}{\varepsilon_{l}^{b \rightarrow u}}
\]

Corrections:

- Unfolding the \(m_X/q^2\) resol. 0.984 ± 0.014
- \(b \rightarrow u\) selection efficiency: 0.274
- Full recon. efficiency ratio:
 \[0.75 ± 0.048\]
- Fraction of semileptonic leptons with \(P_l > 1.0\)GeV/c

Partial branching fraction

\[
Br(B \rightarrow X \ell \nu) = 0.1073 ± 0.0028 \quad \text{(PDG2004)}
\]

140fb\(^{-1}\) preliminary

\[
\Delta B(B \rightarrow X_u \ell \nu) = \left[0.99 ± 0.15 ± 0.18 ± 0.04 ± 0.07\right] \times 10^{-3}
\]

\(m_X < 1.7\) GeV/c\(^2\), \(q^2 > 8\) GeV\(^2\)

2004/8/17
|\(V_{ub} |\) Determination

- Extrapolation to the total br.
 \[B(B \to X_u \ell \nu) = \Delta B(B \to X_u \ell \nu) / f_u \]
- New determination of b-quark shape function (SF) parameters from Belle’s \(B \to X_s \gamma \) photon spectrum.
 \[\pm \text{Higher order correction (FN \to BLL)} \]
 \[\pm \text{Contribution from sub-leading SF + W.A.} \]
 \[f_u = 0.294 \pm 0.044 \]

\[
B(B \to X_u \ell \nu) = \left[3.37 \pm 0.50 \pm 0.60 \pm 0.14 \pm 0.24 \pm 0.50 \right] \times 10^{-3}
\]

PDG formula \(|V_{ub}| = 0.00424 \left[B(B \to X_u \ell \nu) \frac{1.61 \text{ps}}{0.002 \tau_B} \right]^{1/2} \) +latest HQ parameters

\[
|V_{ub}| = \left[5.54 \pm 0.42 \pm 0.50 \pm 0.12 \pm 0.19 \pm 0.42 \pm 0.27 \right] \times 10^{-3}
\]

\[\text{stat. syst. } b \to u. \quad b \to c. \quad f_u \quad \text{Br} \to |V_{ub}| \]

140fb\(^{-1}\) preliminary
Exclusive $B \rightarrow X_u \ l \ \nu$ w/ Semileptonic Decay Tag

- New method for clean extraction of $B \rightarrow \pi \ l \ \nu, \ \rho \ l \ \nu$ decays.

![Diagram of B meson decays]

Tagging side

$B_{\text{tag}} \rightarrow D(\ast) \ l \ \nu$

Signal side

$B_{\text{sig}} \rightarrow \pi, \ \rho \ l \ \nu$

"Double semileptonic" decay.
Analysis Method

Exclusive $B \rightarrow X_u \ell \nu$

Tag side reconstruction

$B_{\text{tag}} \rightarrow D^{*+} \ell^- \overline{\nu} / D^+ \ell^- \overline{\nu}$

- $D^0 \pi^+ / D^+ \pi^0$
- 4 decay modes
- 7 decay modes

Signal side reconstruction

$B_{\text{sig}} \rightarrow X_u \ell^+ \nu$

- π^+ or $\pi^+ \pi^0$

$P_\ell > 0.8 \text{ GeV} / c$

$N(\pi^-) = 1, N(\pi^0) \leq 1$

Kinematics of double semileptonic decay

Back-to-back correlation of the two B constrains their direction to the intersection of the 2 cones.

$x_B = \pm \sqrt{1 - \frac{1}{\sin^2 \theta_{12}} (\cos^2 \theta_B + \cos^2 \theta_B - 2\cos \theta_B \cos \theta_B \cos \theta_{12})}$.

To have intersection, must be $0 \leq x_B^2 \leq 1$.
Calibration with $B_{\text{sig}} \rightarrow D^* l \nu$ Decays

Validity of the method for double semileptonic decay detection has been tested with

$$B_{\text{sig}} \rightarrow D^* \ell^+ \bar{\nu} \rightarrow D^0 \pi^- \rightarrow K^+ \pi^-$$

The ratio $N_{\text{obs}} / N_{\text{expected}} = 0.89 \pm 0.08$ is used to correct the MC efficiency for $\pi l \nu$ and $\rho l \nu$ detection.

The method works!
Signal Extraction

We extract $\pi l \nu / \rho l \nu$ signals simultaneously by fitting 2D (m_X, x^2) distribution.

- Fitting components: $\pi l \nu, \rho l \nu, \text{other } X_u l \nu, \text{BB background}$.
- PDF’s are based on MC.
- Constraint for extracted Br: $\text{Br}(\pi l \nu)+\text{Br}(\rho l \nu) + \text{Br(\text{other } X_u l \nu)} = \text{Br}(X_u l \nu)$

Fitting results for all q^2 data.

<table>
<thead>
<tr>
<th>$\pi l \nu$ (82 ± 13)</th>
<th>$\rho l \nu$ (65 ± 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_X GeV/c2</td>
<td>Entries</td>
</tr>
</tbody>
</table>

$\pi l \nu$ decays are cleanly extracted!
Extraction of q^2 Distribution

- q^2 distribution is extracted by fitting the (m_X, x^2) distribution for three q^2 intervals.

m_X dist. for three q^2 intervals

Extracted q^2 dist.

At the present accuracy, the obtained q^2 dist. does not exclude any tested models.

$B_{total} = [1.76 \pm 0.28 \pm 0.20 \pm 0.03] \times 10^{-3}$

FF-dep.

140 fb$^{-1}$

Preliminary
|\(V_{ub}|\) from \(B^0 \rightarrow \pi^- l^+ \nu\)

- \(|V_{ub}|\) determined from \(B > 16 \text{GeV}^2\) \((B^0 \rightarrow \pi^- l^+ \nu)\) with lattice QCD.

- w/ quenched LQCD \([\text{FNAL/JLQCD/APE/UKQCD}]\)
 - Average \(\tilde{\Gamma}_{\text{thy}} = 1.92^{+0.32}_{-0.12} \pm 0.47\)
 - \((3.90 \pm 0.71 \pm 0.23^{+0.62}_{-0.48}) \times 10^{-3}\)

- w/ unquenched LQCD \([\text{FNAL/HPQCD}]\)
 - Preliminary results reported at Lattice’04.
 - \(\text{FNAL’04}\) \(\tilde{\Gamma}_{\text{thy}} = 1.96 \pm 0.51 \pm 0.39\)
 - \((3.87 \pm 0.70 \pm 0.22^{+0.85}_{-0.51}) \times 10^{-3}\)
 - \(\text{HPQCD}\) \(\tilde{\Gamma}_{\text{thy}} = 1.31 \pm 0.33\)
 - \((4.73 \pm 0.85 \pm 0.27^{+0.74}_{-0.50}) \times 10^{-3}\)

- \(140 \text{fb}^{-1},\) preliminary
 - 4th error from \(\tilde{\Gamma}_{\text{thy}}\)
 - FF-dep. in Br is small for \(\pi l \nu\) data

Exclusive \(B \rightarrow X_u l \nu\)
Summary

We have obtained preliminary $|V_{ub}|$ results from

- **Inclusive $B \rightarrow X_u \, l \, \nu$ w/ fully reconstructed tag.**
 - Results are compatible and consistent with the previous exp’s.

- **Exclusive $B \rightarrow X_u \, l \, \nu$ ($B^0 \rightarrow \pi \, l \, \nu$) w/ semileptonic decay tag.**
 - Results are compatible and consistent with the previous exp’s and inclusive results.
 - New method for clean signal extraction has been demonstrated.

- These measurements are promising approach at B-factories in the coming years!

| $Belle \, |V_{ub}|$ |
|----------------|
| Achieved with various methods |

<table>
<thead>
<tr>
<th>$Belle , \pi l \nu$ w/ LQCD (quenched)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Belle , \pi l \nu$ w/ LQCD (unquenched, preliminary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAL04</td>
</tr>
<tr>
<td>HPQCD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Belle , X_u \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive w/ full-recon.</td>
</tr>
<tr>
<td>(m_X, q^2) w/ ν-recon.</td>
</tr>
<tr>
<td>P_ν end-point</td>
</tr>
</tbody>
</table>
Backup Slides
Inclusive $B \rightarrow X_u \ell \nu$

Systematic Uncertainties

b\rightarrowu MC
- statistics $= 4\%$
- model dep. $= 4.2\%$
 - Variate inclusive parameters within errors

b\rightarrowc MC
- statistics $= 15\%$
- model dep. $= 5\%$
 - $D\nu$ ($\rho_D = 1.19 \pm 0.19$) ... 5.6%
 - $D^*\nu$ ($\rho_{A1} = 1.51 \pm 0.13$) ... 3.9%
 - $D^{**}\nu$... 1.6%

Detector sim. for b\rightarrowc & b\rightarrowu MC $= 6.5\%$

Correlated errors, added/subtracted in linear for the two MC’s

Adding:
- Kaon ID $= 6\%$
- tracking $= 2\%$

Subtracting:
- Lept. sel. $= 1\%$
- γ clusters $= 1\%$

Systematic error of $R_{e^{\text{freco}}}$ and $R_{e^{\text{lept}}}$... 6.4\%
Systematic Uncertainty

Exclusive $B \rightarrow X_u \ell \nu$

Major contribution

$D^*\ell\nu$ calibration
- Statistics of detected $D^*\ell\nu$ 8.3%
- Error of $Br(B^0 \rightarrow D^*\ell\nu)$ 4.3%

$B\bar{B}$ background shape
- tested $\Delta B(\pi \ell \nu)$ ($\Delta B(\rho \ell \nu)$) in MC by
 - removing charged track by 1%
 - $-4.2(+23.5)$ %
 - removing π^0 by 3%
 - $-1.1(+12.8)$ %
 - Replacing K^\pm with π^\pm by 2%
 - $-0.5(+16.6)$ %

Significant change in $\Delta B(\rho \ell \nu)$, due to the broad width of ρ meson.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\pi^-\ell^+\nu$</th>
<th>$\rho^-\ell^+\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking efficiency</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>π^0 reconstruction</td>
<td>$-$</td>
<td>3</td>
</tr>
<tr>
<td>Lepton identification</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Kaon identification</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$D^*\ell\nu$ calibration</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>$Br(X_u\ell\nu)$ in the fitting</td>
<td>0.2</td>
<td>3.4</td>
</tr>
<tr>
<td>$B\bar{B}$ background shape</td>
<td>4.4</td>
<td>31.5</td>
</tr>
<tr>
<td>$\frac{N_{B\bar{B}}}{f_+/f_0}$</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>χ_d</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>total</td>
<td>11.5</td>
<td>33.5</td>
</tr>
</tbody>
</table>
B$\rightarrow\pi$ Form-Factor from LQCD

- Four quenched calculations from FNAL, JLQCD, APE and UKQCD (used in CLEO2003).
 - Average $\tilde{\Gamma}_{thy} = 1.92^{+0.32}_{-0.12} \pm 0.47$
 - Include 15% quenching error

- Preliminary unquenched results from FNAL and HPQCD (reported at Lattice’04).
 - FNAL (M.Okamoto)
 $\tilde{\Gamma}_{thy} = 1.96 \pm 0.51 \pm 0.39$
 - HPQCD (J.Shigemitsu)
 $\tilde{\Gamma}_{thy} = 1.31 \pm 0.33$

($\tilde{\Gamma}_{thy}$ given for $q^2>16\text{GeV}^2$)
Error of FF from Unquenched LQCD

FNAL’04
\[\tilde{\Gamma}_{phy} = 1.96 \pm 0.51(stat.) \pm 0.39(syst.) \]
- Statistical: \(\sim 10\% \)
- Lattice-continuum matching: \(\sim 7\% \)
- Chiral extrapolation: \(\sim 6\% \)
- Discritization: \(\sim 5\% \)
\[\times 2 \]

HPQCD
\[\tilde{\Gamma}_{phy} = 1.31 \pm 0.33 [0.13(stat) \pm 0.30(syst)] \]
- Statistical: \(\sim 5\% \)
- Higher oder operator matching: \(\sim 9\% \)
- Chiral extrapolation: \(\sim 5\% \)
\[\times 2 \]

Number given by M.Okamoto (FNAL) and J.Shigemitsu (HPQCD) in private communications.