1999/09/20 BELLE analysis meeting @KEK

# Tau event study

K.Inami(nagoya-u)

- contents

-  $\boldsymbol{\tau}$  related things

- $\rho^0$ ,  $a_1$  in  $\tau$  decay (1-3 topology event)
- $\tau$  pseudo-mass
- $\pi^{0}$ ,  $\rho^{\pm}$  in  $\tau$  decay (Hayashii)

- Test of T/CP invariance

- in  $e^+e^- \to \tau^+\tau^-$  reaction
- Introduction
- Simulation study
- Data analysis
- Summary and plan

-  $\tau$  related things

" $\tau$ " at BELLE

- High luminosity  $(10 \sim 100 \text{fb}^{-1})$   $\leftrightarrow$  CLEO  $\sim 19 \text{fb}^{-1}$ - Cross-section of  $\tau$  pair (0.91nb) almost same as BB (1.05nb)

 $\rightarrow$  High statistics as well as B 10M ~ 100M sample

Data was collected ~25  $pb^{-1}$  $\rightarrow \tau$  pair events exist?

<u>1-3 topology event search</u>

good charged track definition Pt ≥ 0.1 GeV/c |dr|<0.5 cm, -2(or 1)<dz<2(or 3) cm (IP shift)</li>
good gamma definition E > 0.1 GeV/c
electron ID eid.le\_noeop > 0.6, E/p > 0.6
muon ID mu2.flag ≥ 2
→ Others are defined as pion. 1-3 topology event search



- selected samples

|                             | e - 3h | μ - 3h |
|-----------------------------|--------|--------|
| Data(20.8pb <sup>-1</sup> ) | 83     | 52     |
| MC expectation              |        |        |
| τpair                       | 130    | 103    |
| hadronic                    | 0.3    | 0.3    |





#### 1-3 topology event search



#### <u>ρ, a<sub>1</sub> resonance</u> invariant mass of 2 hadrons, 3 hadrons

- unknown sharp peak Background of other mode?

#### 1-3 topology event search



-  $\tau$  mass limit was seen.

## by Hayashii

- Data: run114 498
- Code: b19990903

## - Separate two hemisphere in the c.m. system

- Select 1-1 and 1-3 topology
- $E\gamma > 20 \text{ MeV}$
- Selection Efficiency  $\sim 40\%$

| - result | _ |
|----------|---|
|----------|---|

|                                  | Data                        | MC                            |
|----------------------------------|-----------------------------|-------------------------------|
| $\mathrm{m}_{\pi^0}$             | $133\pm0.2~{ m MeV}$        | 132.9MeV                      |
| $\mathbf{O}\pi^0$                | 5.4 MeV                     | 5.1 MeV                       |
| $\overline{ ho(\pi^{\pm}\pi^0)}$ |                             |                               |
| $M_{ ho}$                        | $746 \pm 4 \; \mathrm{MeV}$ | $762 \pm 1.5 \; \mathrm{MeV}$ |
| Г                                | 164 MeV                     | 152 MeV                       |
| Yield                            | $1385\pm80$                 | ~1500                         |

# - Test of T/CP invariance in $e^+e^- \rightarrow \tau^+\tau^-$ reaction

- Introduction

CP violation exists in K<sup>0</sup> system, BELLE confirm CP violation exists in B system, and KM mechanism.

In the lepton sector,

we can expect the existence of CP violation.  $\tau$  ,the heaviest lepton, could exhibit a larger violation than others, like B.



measure directions of 2 leptons( $e/\mu$ )



Test of T/CP invariance in  $e^+e^- \to \tau^+\tau^-$  reaction - Introduction

- T/CP transformation

triple momentum correlation A

 $A = p_1 \bullet (p_2 \times p_3)$ 

 $p_1$ : unit vector of e<sup>-</sup> beam momentum  $p_2$ : unit vector of e<sup>+</sup>/ $\mu^+$  momentum  $p_3$ : unit vector of e<sup>-</sup>/ $\mu^-$  momentum

A is odd under P and T transformation.



Test of T/CP invariance in  $e^+e^- \to \tau^+\tau^-$  reaction - Introduction

#### - Measurement

 $N(l_2^+l_3^-; >) \leftarrow$  the number of samples with *A*>0  $N(l_2^+l_3^-; <) \leftarrow$  *A*<0

$$\begin{split} R^{T}(\mu^{+}e^{-}) &= \frac{N(\mu^{+}e^{-}; >)}{N(\mu^{+}e^{-}; <)} = 1 + 2\delta \quad N(\mu^{+}e^{-}; >) = N_{0}(1 + \delta) \\ R^{T}(e^{+}\mu^{-}) &= \frac{N(e^{+}\mu^{-}; >)}{N(e^{+}\mu^{-}; <)} = 1 + 2\delta \\ R^{CP}(\mu^{+}e^{-}) &= \frac{N(\mu^{+}e^{-}; >)}{N(e^{+}\mu^{-}; <)} = 1 + 2(\delta + \Delta) \\ R^{CP}(e^{+}\mu^{-}) &= \frac{N(e^{+}\mu^{-}; >)}{N(\mu^{+}e^{-}; <)} = 1 + 2(\delta - \Delta) \end{split}$$

 $\delta$  denotes T violation portion.  $\Delta$  denotes CPT violation portion.



Test of T/CP invariance in  $e^+e^- \to \tau^+\tau^-$  reaction - Introduction

When CPT holds ( $\Delta$ =0)

$$R^{T}(\mu^{+}e^{-}) = R^{T}(e^{+}\mu^{-})$$
  
= R^{CP}(\mu^{+}e^{-}) = R^{CP}(e^{+}\mu^{-}) = 1+2\delta  
 $\delta$  denotes T/CP violation portion.

In order to control the systematic uncertainty (the geometrical acceptance, detection and reconstruction efficiency, ...)

$$R = R^{T}(\mu^{+}e^{-})R^{T}(e^{+}\mu^{-}) = R^{CP}(\mu^{+}e^{-})R^{CP}(e^{+}\mu^{-})$$
  
= 1+48  
=  $\frac{N(\mu^{+}e^{-}; >)}{N(\mu^{+}e^{-}; <)} \frac{N(e^{+}\mu^{-}; >)}{N(e^{+}\mu^{-}; <)}$ 

Deviation of R from 1 indicates T/CP violation.

- Statistical sensitivity

$$\left(\frac{\Delta R}{R}\right)^2 = 4 \left[ \left(\frac{\Delta N_0}{N_0}\right)^2 + \left(\frac{\Delta N_{BG}}{N_{BG}}\right)^2 \right]$$
  
N<sub>0</sub>: average of N(l<sup>+</sup>l<sup>-</sup>;)

When  $\Delta N_{BG} \ll \Delta N_0$ 

$$\Delta R = 2 \frac{R}{\sqrt{N_0}} \qquad \Delta \delta = \frac{1}{2\sqrt{N_0}}$$

Test of T/CP invariance in  $e^+e^- \to \tau^+\tau^-$  reaction

- Simulation study

Main backgrounds are - 2 photon(eeµµ) process - mis-PID of  $\pi$  as  $\mu$ - selection criteria cut-1 (multiplicity) # of good charged track = 2Net charge = 0# of good gamma = 0cut-2 (momentum)  $\Sigma Pcm < 9 \text{ GeV/c}$ Pcm < 5 GeV/c for all track  $-0.950 < \cos(\theta_{\rm Pmiss}) < 0.985$  $\rightarrow$  2photon cut-3 (PID)  $\rightarrow$  2photon  $-0.60 < \cos(\theta_{\text{Plab}}) < 0.83$ (barrel region) muon ID:  $P_{lab} > 1.2 \text{ GeV/c}$ mu2.flag >= 2electron ID:  $P_{lab} > 0.5 \text{ GeV/c}$ eid.le\_noeop > 0.6, E/p > 0.6

| Test of T/CP                  | invarianc  | e in e <sup>+</sup> e <sup>-</sup> – | $ ightarrow \tau^+ \tau^- reacti$ | on     |            |                       |
|-------------------------------|------------|--------------------------------------|-----------------------------------|--------|------------|-----------------------|
| -Simulat                      | ion result |                                      |                                   |        |            | * Old MC data         |
| mode                          | ττ         | eeµµ                                 | BB                                | conti. | ท่ ท่      | bhabha                |
| Generated                     | 400k       | $1 \mathrm{M}$                       | 500k *                            | 700k * | 500k *     | 500k *                |
|                               | 0.91nb     | 18.80nb                              | 1.05nb                            | 3.39nb | 0.94nb     | 1249nb                |
| <b>Pre-selected</b>           | 76.3%      | 22.3%                                |                                   |        | 5.5%       | 0.5%                  |
| Passed cut-1                  | 14.2%      | 17.7%                                | 0                                 | 0.7%   | 2.2%       | 0.3%                  |
| cut-2                         | 12.2%      | 7.7%                                 | 0                                 | 0.2%   | 0.7%       | 0.1%                  |
| observed cro                  | ss-section | (dd)                                 |                                   |        |            |                       |
| $e^+\mu^-$                    | 4.7 pb     | 0.1                                  | 0                                 | 0      | 0          | 0                     |
| µ <sup>+</sup> e <sup>-</sup> | 4.7        | 0.1                                  | 0                                 | 0      | 0          | 0                     |
| e^e_                          | 5.9        | 0                                    | 0                                 | 0      | 0          | 20                    |
| _n'+µ_                        | 3.5        | 3.4                                  | 0                                 | 0      | 1.9        | 0                     |
| for <b>t</b> t                | accepted   | rates m                              | is-PID rate                       | +      | ما<br>ما ا | # of selected samples |
| $e^+\mu^-$                    | 0.52%      | 2.                                   | 5%                                | arrehr | eu l'ale-  | # of generated events |
| $\mu^+e^-$                    | 0.52%      | <u> </u>                             | 6%                                |        |            | )                     |
| $e^+e^-$                      | 0.65%      | 0.5                                  | 3%                                |        |            |                       |
| _n'+u                         | 0.41%      | 7.(                                  | 6%                                |        |            |                       |

Ţ

-

# Test of T/CP invariance in $e^+e^-\to \tau^+\tau^-$ reaction - Simulation result

<u>triple momentum correlation  $A = p_1 \bullet (p_2 \times p_3)$ </u>

 $p_1$ : unit vector of e<sup>-</sup> beam momentum  $p_2$ : unit vector of e<sup>+</sup>/ $\mu^+$  momentum  $p_3$ : unit vector of e<sup>-</sup>/ $\mu^-$  momentum



**Triple momentum correlation A for MC** 

- A distribution is symmetric.

- Background is small and also symmetric.  $\rightarrow$  Background does not affect *R*. Test of T/CP invariance in  $e^+e^- \to \tau^+\tau^-$  reaction - Simulation result

for  $\tau \tau$  400k sample (0.44fb<sup>-1</sup>) e<sup>+</sup>µ<sup>-</sup> 2078 events A>0 1041 A<0 1037 µ<sup>+</sup>e<sup>-</sup> 2062 events A>0 1024 A<0 1038

Backgrounds

| ееµµ                            | ~2% | $(\Delta N_{BG}/\Delta N_0)^2 \sim 0.02$     |  |  |
|---------------------------------|-----|----------------------------------------------|--|--|
| mis-PID                         | ~2% | $(\Delta N_{\rm BG}/\Delta N_0)^2 \sim 0.02$ |  |  |
| Others are less than the above. |     |                                              |  |  |

$$\Delta R = 2 \frac{R}{\sqrt{N_0}} \sqrt{1 + \left(\frac{\Delta N_{BG}}{\Delta N_0}\right)^2}$$

 $\rightarrow$  not effective to *R* and  $\delta$ .

$$R = 0.990 \pm 0.062$$
  
 $\Delta \delta = 0.016$  at  $0.44 \text{fb}^{-1}$ 

Test of T/CP invariance in  $e^+e^- \to \tau^+\tau^-$  reaction

- Data analysis

| Data           | $20.8 \text{pb}^{-1}$ |             |
|----------------|-----------------------|-------------|
| - selected     | d samples             |             |
|                | $e^+\mu^-$            | $\mu^+ e^-$ |
| Data           | 77                    | 85          |
| A>0            | 42                    | 45          |
| A<0            | 35                    | 40          |
| MC expe        | ectation              |             |
| $\tau$ pair $$ | 98                    | 96          |
| eeµµ           | 3.9                   | 5.9         |

$$\frac{R = 1.35 \pm 0.42}{\Delta \delta = 0.079}$$

→ # of selected sample difference (Data  $\leftrightarrow$  MC) - Hardware trigger effect → use trigger simulator for MC. Test of T/CP invariance in  $e^+e^-\to \tau^+\tau^-$  reaction - Data analysis  $\;\;result$ 

triple momentum correlation A



Triple momentum correlation A for data

Statistics is low...

- Summary and plan

-  $\tau$  related things

clear  $\rho^{\pm}$  resonance from  $\tau$ pseudo-mass disribution  $\rightarrow \tau$  mass - need more event selection study (1-3)

- Test of T/CP invariance

 $e^+e^- \rightarrow \tau^+\tau^- \rightarrow e \mu 4\nu$  (pure leptonic reaction) triple momentum correlation  $A \rightarrow R$  ratio

- Simulation study  $N_{e+\mu-} + N_{\mu+e-} \sim 4,000$  events at  $0.44 \text{fb}^{-1}$ Background 2 photon(eeµµ) ~2% mis-PID (µ/ $\pi$ ) ~2%  $R = 0.990 \pm 0.062$   $\Delta \delta = 0.016$ - Data analysis (20.8pb<sup>-1</sup>)  $N_{e+\mu-} + N_{\mu+e-} = 162$  events  $R = 1.35 \pm 0.42$  $\Delta \delta = 0.079$ 

- Plan

- use trigger simulator for MC

- Background study

2 photon background in real data Muon ID study (by  $\tau \rightarrow$  hadrons)