BELLE における

$e^+e^- \rightarrow \tau^+\tau^-$ 反応での T/CP 対称性の検証

名大理 居波賢二 大島隆義 鈴木史郎 杉山 晃 他 BELLE collaboration

- contents

- Test of T/CP invariance
 - in $e^+e^- \to \tau^+\tau^-$ reaction
 - Introduction
 - Simulation study
 - Data analysis
 - Summary and plan

- Introduction

- motivation

- " τ " at BELLE

- High luminosity $(10 \sim 100 \text{fb}^{-1})$ \leftrightarrow CLEO $\sim 19 \text{fb}^{-1}$ - Cross-section of τ pair ($\sim 0.91 \text{nb}$) almost same as BB ($\sim 1.05 \text{nb}$)
- \rightarrow High statistics as well as B 10M ~ 100M sample

Test of T/CP invariance in $e^+e^- \to \tau^+\tau^-$ reaction - Introduction

<u>triple momentum correlation A</u> <u>A = $p_1 \cdot (p_2 \times p_3)$ </u> p_1 : unit vector of e⁻ beam momentum p_2 : unit vector of e⁺/ μ^+ momentum p_3 : unit vector of e⁻/ μ^- momentum

- T/CP/CPT transformation

- Measurement

 $N(l_2^+l_3^-; >) \leftarrow$ the number of samples with A>0 $N(l_2^+l_3^-; <) \leftarrow$ A<0 Test of T/CP invariance in $e^+e^- \to \tau^+\tau^-$ reaction - Introduction

- Measurement

$$\begin{split} & \mathsf{R}^{\mathrm{T}}(\mu^{+}\mathrm{e}^{-}) = \frac{\mathsf{N}(\mu^{+}\mathrm{e}^{-}\,;\,>)}{\mathsf{N}(\mu^{+}\mathrm{e}^{-}\,;\,<)} = 1 + 2\delta \quad \mathsf{N}(\mu^{+}\mathrm{e}^{-}\,;\,>) = \mathsf{N}_{0}(1 + \delta) \\ & \mathsf{R}^{\mathrm{T}}(\mathrm{e}^{+}\mu^{-}) = \frac{\mathsf{N}(\mathrm{e}^{+}\mu^{-}\,;\,<)}{\mathsf{N}(\mathrm{e}^{+}\mu^{-}\,;\,<)} = 1 + 2\delta \\ & \mathsf{R}^{\mathrm{CP}}(\mu^{+}\mathrm{e}^{-}) = \frac{\mathsf{N}(\mu^{+}\mathrm{e}^{-}\,;\,>)}{\mathsf{N}(\mathrm{e}^{+}\mu^{-}\,;\,<)} = 1 + 2(\delta + \Delta) \\ & \mathsf{R}^{\mathrm{CP}}(\mathrm{e}^{+}\mu^{-}) = \frac{\mathsf{N}(\mathrm{e}^{+}\mu^{-}\,;\,<)}{\mathsf{N}(\mu^{+}\mathrm{e}^{-}\,;\,<)} = 1 + 2(\delta - \Delta) \end{split}$$

$$\label{eq:delta:station} \begin{split} \delta &: T \text{ violation portion.} \\ \Delta &: CPT \text{ violation portion.} \end{split}$$

When CPT holds (Δ =0)

$$\begin{array}{l} R^{T}(\mu^{+}e^{-}) = R^{T}(e^{+}\mu^{-}) \\ = R^{CP}(\mu^{+}e^{-}) = R^{CP}(e^{+}\mu^{-}) = 1 + 2\delta \end{array}$$

 δ : T/CP violation portion.

Test of T/CP invariance in $e^+e^- \to \tau^+\tau^-$ reaction - Introduction

- control the systematic uncertainty geometrical acceptance detection and reconstruction efficiency, ...

$$\begin{split} R &= R^{\mathrm{T}}(\mu^{+}e^{-})R^{\mathrm{T}}(e^{+}\mu^{-}) = R^{\mathrm{CP}}(\mu^{+}e^{-})R^{\mathrm{CP}}(e^{+}\mu^{-}) \\ &= 1 + 4\delta \\ &= \frac{N(\mu^{+}e^{-}\;;\;>)}{N(\mu^{+}e^{-}\;;\;<)}\;\frac{N(e^{+}\mu^{-}\;;\;>)}{N(e^{+}\mu^{-}\;;\;<)} \end{split}$$

Deviation of R from 1

$$\rightarrow$$
 T/CP violation

- Statistical sensitivity

$$\left(\frac{\Delta R}{R}\right)^{2} = 4 \left[\left(\frac{\Delta N_{0}}{N_{0}}\right)^{2} + \left(\frac{\Delta N_{BG}}{N_{BG}}\right)^{2} \right]$$

N₀: average of N(l⁺l⁻;)

When
$$\Delta N_{BG} \ll \Delta N_0$$

 $\Delta R = 2 \frac{R}{\sqrt{N_0}} \qquad \Delta \delta = \frac{1}{2\sqrt{N_0}}$

- Simulation study

Main backgrounds are - 2 photon(eeµµ) process cross-section ~19nb $\leftrightarrow \tau$ pair:0.91nb - mis-PID of π as μ - selection criteria cut-1 (multiplicity) # of good charged track = 2Net charge = 0# of good gamma = 0cut-2 (momentum) $\Sigma Pcm < 9 GeV/c$ Pcm < 5 GeV/c for all track $-0.950 < \cos(\theta_{\rm Pmiss}) < 0.985$ \rightarrow 2photon cut-3 (PID) $-0.60 < \cos(\theta_{\text{Plab}}) < 0.83$ \rightarrow 2photon (barrel region) muon ID: by KLM detector $P_{lab} > 1.2 \text{ GeV/c}$ fake rate: a few % electron ID: by CsI calorimeter, dE/dx(CDC) $P_{lab} > 0.5 \text{ GeV/c}$ fake rate: < 1 %

2 photon(eeµµ) background rejection

$ ightarrow au^+ au^-$ reaction	
t of T/CP invariance in $e^+e^- \rightarrow$	-Simulation result

* Old MC data

mode	ττ	eeµµ	BB	conti.
Generated	400k	1M	500k *	700k *
	0.91 nb	18.80nb	1.05nb	3.39nb
Pre-selected	76.3%	22.3%		
Passed cut-1	14.2%	17.7%	0	0.7%
cut-2	12.2%	7.7%	0	0.2%
observed cross-s	ection (pb)			
$e^+\mu^-$	4.7~(0.52%)	$0.1 ~(\sim 10^{-5})$	0	0
mis-PID	2.5%			
µ⁺e⁻	4.7 (0.52%)	$0.1 ~(\sim 10^{-5})$	0	0
mis-PID	1.6%			

 \sim

Test of T/CP invariance in $e^+e^-\to \tau^+\tau^-$ reaction - Simulation result

<u>triple momentum correlation $A = p_1 \bullet (p_2 \times p_3)$ </u>

- A-distribution is symmetric.
- Background is small and also symmetric.

 \rightarrow Background does not affect R.

Test of T/CP invariance in $e^+e^-\to \tau^+\tau^-$ reaction - Simulation result

for τ pair sample at 0.44fb⁻¹

 \rightarrow efficiency ~ 17%

Backgrounds $ee\mu\mu \sim 2\%$ mis-PID $\sim 2\%$ Others are less than the above. \rightarrow almost negligible

 $R = 0.990 \pm 0.062$

 $\Delta \delta = 0.016$ at 0.44fb^{-1}

Test of T/CP invariance in $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$ reaction

- Data analysis

Data	20.8pb^{-1}	
- selected	l samples	
	$e^+\mu^-$	$\mu^+ e^-$
Data	77	85
A>0	42	45
A<0	35	40
MC expe	ctation	
τ pair	98	98
ееµµ	2.0	2.7

 $\frac{R = 1.35 \pm 0.42}{\Delta \delta = 0.079}$

 \rightarrow # of selected sample difference (Data \leftrightarrow MC) - Hardware trigger effect

Test of T/CP invariance in $e^+e^-\to \tau^+\tau^-$ reaction - Data analysis $\;\;result$

triple momentum correlation A

Triple momentum correlation A for data

Statistics is low...

- Summary and plan

- Test of T/CP invariance

```
e^+e^- \rightarrow \tau^+\tau^- \rightarrow e \mu 4\nu (pure leptonic reaction)
triple momentum correlation A \rightarrow R ratio
```

```
- Simulation study

N_{e+\mu-} + N_{\mu+e-} \sim 4,000 events at 0.44fb<sup>-1</sup>

efficiency 17% (accepted rate 0.52%)

Background 2 photon(eeµµ) ~2%

mis-PID (µ/\pi) ~2%

R = 0.990 \pm 0.062

\Delta \delta = 0.016
```

```
- Data analysis (20.8pb<sup>-1</sup>)

N_{e+\mu-} + N_{\mu+e-} = 162 events

R = 1.35 \pm 0.42

\Delta \delta = 0.079
```

 \rightarrow need more data...

 \rightarrow first target: a few fb⁻¹ $\Delta \delta < 1\%$