

Measurements of the Higgs boson properties with the ATLAS detector

Makoto Tomoto

on behalf of the ATLAS collaboration

Introduction

One year has passed since a new boson was discovered at LHC (ATLAS & CMS)

Since then, we focus our interests on

- Is this new boson really responsible for the EW symmetry breaking mechanism?
 - i.e. Does it provide masses to the fermions and bosons?
 - Is it the Higgs boson predicted by the SM i.e. a $J^P=0^+$?

Are there any signs of physics beyond the SM found?
 They are addressed experimentally by measurement of the properties

 mass, couplings, spin-parity, ...

 ATLAS and CMS are the only experiments in the world to measure them now.

Higgs productions at the LHC

Dominant process is gluon-gluon fusion (ggF) • Proceeds mainly through the top quark loop \rightarrow Indirect probe of Higgs-fermion coupling

Vector Boson Fusion (VBF)

Direct probe of vector boson coupling

 Signature includes two forward high-pT jets with a large rapidity-gap

Associated production with W/Z (VH)

- Direct probe of vector boson coupling
- Signature includes high-pT leptons

Associated production with a top quark pair (ttH)

Direct probe of Higgs-top quark coupling

Η

σ(pb)	7TeV	8TeV
ggF	15	19
VBF	1.2	1.6
WH	0.57	0.70
ZH	0.33	0.41
ttH	0.09	0.13

3

Higgs decay modes at LHC

4

(C)

Н

min

mm

Higgs boson mass m_H~125.5GeV gives us maximally rich decay modes !!

Higgs boson can decay into a photon pair via W or t-quark loop.

 Negative interference between W-boson loop and t-quark loop helps the indirect measurement of the coupling to fermions

Final states with leptons or photons are easier to measure

• Discovery channels : $H \rightarrow \gamma \gamma$, $ZZ(\rightarrow 4\ell)$, $WW(\rightarrow \ell \nu \ell \nu)$

Decays to jets or τ s are more difficult to separate from QCD background, but they are very important for the direct measurement of the coupling to fermions.

Events / 2 GeV

Events - Fitted bkg

Local p_o

~370 signal events expected ~15 signal events expected ~150 signal events expected

140

130

150

160

170 180

m_H [GeV]

m_H [GeV]

10⁻¹³

110

m_µ [GeV]

~370 signal events expected ~15 signal events expected ~150 signal events expected

Event categorization

Selected events are separated exclusive categories based on the existence of the extra jets, leptons, and E_T^{miss}

- To increase the sensitivity to the overall signals
- To specify the production processes (it is crucial to measure the couplings)

 $H \rightarrow \gamma \gamma$ 9 categories for ggF, 2 categories for VBF, 3 for VH

 $H \rightarrow ZZ$ no other objects for ggF, di-jet for VBF, lepton for VH

 $H \rightarrow WW$ 0-jet and 1-jet for ggF, or 2- jets for VBF

Mass of the new boson

Combined $m_H = 125.5 \pm 0.2 \text{ (stat)} \stackrel{+0.5}{_{-0.6}} \text{ (sys)} \text{ GeV}$ $\Delta m_H = m_H^{\gamma\gamma} - m_H^{ZZ} = 2.3 \stackrel{+0.3}{_{-0.7}} \text{ (stat)} \pm 0.6 \text{ (sys)} \text{ GeV}$

Mass difference ~2.4 σ (1.5% probability to occur) It increases to 8%, if we assume a flat prior for the energy scale uncertainties

arXiv:1307.1427

Signal strength

$\mu = \frac{\sigma \times BR}{(\sigma \times BR)}_{SM}$

 μ =1 (if SM Higgs), μ =0 (if no SM Higgs)

combined

 $\mu = 1.33 \pm 0.14 ({\rm stat}) \pm 0.15 ({\rm sys}) \label{eq:mh}$ (mh=125.5GeV)

Result is consistent with the SM prediction with 15% precision.

H \rightarrow bb and H \rightarrow τ τ not in the combination

Statistical, systematic and theory (QCD scale, PDF) uncertainties are already comparable.

arXiv:1307.1427

Evidence for production via VBF

arXiv:1307.1427

 $3.3\,\sigma$ evidence that a fraction of Higgs boson production occurs through VBF

Coupling measurements

Crucial test of the SM Higgs mechanism

coupling to fermion $g_F = \sqrt{2} \frac{m_F}{v}$ coupling to gauge boson $g_V = 2 \frac{m_V^2}{v}$ SM couplings are tested introducing coupling scale factors \mathcal{K} : $g_i = g_i^{\text{SM}} \times \kappa_i$ The total Higgs boson width is also tested introducing $\mathcal{K} \text{H}^2$: $\Gamma_H = \Gamma_H^{\text{SM}} \times \kappa_H^2$ Assumption for the coupling measurements: 1 resonance, zero-width approximation, SM Lagrangian tensor structure (JP=0+)

$$\sigma \cdot B(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

For example, $gg \rightarrow H \rightarrow \gamma \gamma$ process can be written as

$$\frac{\sigma \cdot \mathbf{B}(\mathbf{gg} \to \mathbf{H} \to \gamma \gamma)}{\sigma_{\rm SM}(gg \to H) \cdot \mathbf{B}_{\rm SM}(\mathbf{H} \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

 $\kappa_{\rm H}$ and effective scale factors κ_{r} , $\kappa_{\rm g}$ (loop induced processes)

• Expressed as a function of the SM coupling scale factors $\kappa_{\gamma}(\kappa_W, \kappa_t) \quad \kappa_g(\kappa_b, \kappa_t) \quad \kappa_H(\kappa_b, \kappa_W, \kappa_Z, ...)$

Couplings to fermions and bosons arXiv:1307.1427

We assume

- One coupling scale factor for fermions $\kappa_F = \kappa_t = \kappa_b = \kappa_{ au} = \dots$
- One coupling scale factor for bosons $\kappa_V = \kappa_W = \kappa_Z$
- κ_g , κ_γ , and κ_H depends only on κ_F and $\kappa_V \rightarrow No$ contributions from BSM

 $\kappa_F \in [0.76, 1.18]$ $\kappa_V \in [1.05, 1.22]$ at 68% C.L.

compatibility of the SM is 12%

$$\kappa_{\gamma}^{2} \simeq |1.26\kappa_{V} - 0.26\kappa_{F}|^{2}$$

$$\int_{h}^{t} \int_{t}^{\eta} \int_{t}^{\eta} \int_{w}^{w} \int_{w}^{\eta} \int_{y}^{\eta} \int_{w}^{\eta} \int_{w}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_{w}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_{w}^{\eta} \int_{v}^{\eta} \int_$$

 $H \rightarrow \gamma \gamma$ prefers the minimum with positive relative sign

• Provided by the negative interference between W-boson loop and t-quark loop $\kappa_{F}=0$ is excluded at >5 σ (mainly through gg \rightarrow H production loop)

Loop induced couplings ($\kappa_g v.s.\kappa_r$)

arXiv:1307.1427

12

We assume

Couplings of the known particles to the Higgs boson have SM strength

$$\kappa_W = \kappa_Z = \kappa_t = \kappa_b = \kappa_\tau = \dots = 1$$

New particles do not contribute to the Higgs boson width Γ_H

$$\begin{split} \kappa_g &= 1.04 \pm 0.14 \\ \kappa_\gamma &= 1.20 \pm 0.15 \\ & \text{at 68\% C.L.} \end{split}$$

Compatibility of the SM is 14%

Summary of the Higgs couplings

Measurements compatible with SM Higgs expectations

Their compatibilities are 12%~20%

arXiv:1307.1427

Spin-Parity Determination

14

SM Higgs boson is scalar particle, i.e. $J^P=0^+$

Several alternative specific models, $J^P = 0^-$, 1⁺, 1⁻, 2⁺, are tested against the SM Higgs $J^P = 0^+$ hypothesis, using angular and kinematic distributions in $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4$ lepton, and $H \rightarrow WW \rightarrow e \nu \mu \nu$

• For J^P=2⁺, Graviton-inspire model with minimal coupling to SM particles is chosen arXiv:1001.3396

$H \rightarrow \gamma \gamma$

Only sensitive for $J^P=0^+$ v.s. $J^P=2^+$

Landau-Yang theorem forbids the direct decay of an on-shell spin-1 particle into a pair of massless particles

H→WW

Used to test J^P=0⁺ v.s. J^P=1⁻, 1⁺, and 2⁺ Only WW $\rightarrow e \nu \mu \nu$ is used

H→ZZ→4 lepton

Used to test JP=0+ v.s. JP=0-, 1-, 1+, and 2+

JP=0+ v.s. 1+ /1-

arXiv:1307.1432

16

J=1 boson is produced only from qqbar annihilation

ZZ* \rightarrow 4 lepton and WW $\rightarrow \ell \nu \ell \nu$ are sensitive for this study

ZZ* \rightarrow 4 lepton : uses BDT from the inputs of m₁₂, m₃₄, and 5 angles

WW $\rightarrow e \nu \mu \nu$: uses 2 BDTs from the inputs of m_T, $\Delta \phi_{\ell \ell}$, m_{\ell \ell}, and p_T^{\ell \ell}

- Classifier 1 : Distinguishes the J^P=O⁺ from sum of the all backgrounds
- Classifier 2 : Distinguishes the J^P=1+, 1⁻ from sum of the all backgrounds

$J^{P}=0^{+}$ v.s. 2⁺

arXiv:1307.1432

Graviton-inspire model with minimal coupling to SM particles is chosen • 2+ boson can be produced via gluon-gluon or qqbar annihilation $\gamma \gamma$, ZZ* \rightarrow 4 lepton and WW $\rightarrow \ell \nu \ell \nu$ are sensitive for this study ZZ* \rightarrow 4 lepton : uses BDT from the inputs of m₁₂, m₃₄, and 5 angles WW $\rightarrow e \nu \mu \nu$: uses 2 BDTs from the inputs of m_T, $\Delta \phi_{\ell \ell}$, m_{\ell \ell}, and pT^{\ell \ell} $\gamma \gamma$: uses m_{$\gamma \gamma$} and decay angle [cos θ *] in di-photon rest frame,

$$|\cos\theta^*| = \frac{|\sinh\left(\Delta\eta^{\gamma\gamma}\right)|}{\sqrt{1 + (p_T^{\gamma\gamma}/m_{\gamma\gamma}^2)}} \frac{2p_T^{\gamma_1} p_T^{\gamma_2}}{m_{\gamma\gamma}^2}$$

 $|\cos \theta^*|$ distribution for the backgrounds is extracted from sideband of m_{rr}

Data agree with 0+ hypothesis: $J^{P}=2+$ hypothesis is excluded at 99.9% C.L.

Spin-Parity summary

arXiv:1307.1432

18

 $J^{P}=0^{-},1^{+},1^{-}$ and 2^{+} are excluded at > 97.8% CL

- 2+ boson can be produced via gluon-gluon or qqbar annihilation
- It is tested as a function of $f_{qq} = fraction of qq/gg produced signals$
 - fqq=4% at LO for 2+m minimal model

Differential cross-section in $H \rightarrow \gamma \gamma$ ATLAS-CONF-2013-072

We measured the fiducial differential cross-section as a function of

- 8 observables : p_{Trr} , $|y_{rr}|$, $|\cos \theta^*|$, N_{jets} , Φ_{jj} , ...,
- The distributions are unfolded to particle level and compared with MC generators
- Sensitive to PDF, radiative correction, relative rate of Higgs production, spin,...

Conclusions

LHC-ATLAS Run1 ends with a great success

Since the discovery of a new boson,

we have measured its property with increasing precision

- Mass is measured as $m_H = 125.5 \pm 0.2 \text{ (stat)} ^{+0.5}_{-0.6} \text{ (stat)} \text{ GeV}$
- Signal strength is measured as

$$\mu = 1.33 \pm 0.14 (\text{stat}) \pm 0.15 (\text{sys})$$

- Evidence for the vector boson mediated process with 3.3σ significance
- Evidence for the coupling to the fermion with $>5\sigma$ significance
- Evidence for the $J^P=0^+$ scalar nature of the Higgs boson

All measured properties are compatible with the SM Higgs boson

LHC will increase \sqrt{s} (=13~14TeV) and Luminosity (~10³⁴cm⁻²s⁻¹)

- More precise measurements will be achieved to challenge the SM predictions.
- It will give us hints of the BSM

This is just the beginning of the exciting "Higgs physics"..... Stay tuned!!

backup

LHC-ATLAS Run I performance

LHC has performed very well

- Peak luminosity : 7.7 x 10³³ cm⁻² s⁻¹
- Delivered luminosity to ATLAS ~29 fb⁻¹

ATLAS collects good quality of data 95% of the time

For physics analysis presented here, we use

- ~5fb⁻¹ collected in 2011 $\sqrt{s} = 7 \text{ TeV}$
- ~21fb⁻¹ collected in 2012 $\sqrt{s} = 8 \text{ TeV}$

With increase of the luminosity, pile-up becomes higher.

Typically, we must reconstruct ~20 vertices within the space of ~5 cm (=p-beam length)

ATLAS detector

The ATLAS detector was designed with discovery of the Higgs boson in mind.

- Precise measurement of the charged tracks by inner detectors
- Identification of electrons and photons against QCD jets
- Excellent calorimeter hermeticity and energy resolution
- Kinematics of photon path by fine segmentation of the calorimeter layer
- Precise muon reconstruction and triggering by muon detectors

ATLAS detector

The ATLAS detector was designed with discovery of the Higgs boson in mind.

- Precise measurement of the charged tracks by inner detectors
- Identification of electrons and photons against QCD jets
- Excellent calorimeter hermeticity and energy resolution
- Kinematics of photon path by fine segmentation of the calorimeter layer
- Precise muon reconstruction and triggering by muon detectors

24

Higgs decay modes at LHC

25

(C)

Н

mm

www

Higgs boson mass m_H~125.5GeV gives us maximally rich decay modes !!

Higgs boson can decay into a photon pair via W or t-quark loop.

Helps the indirect measurement of the coupling to fermions

Final states with leptons or photons are easier to measure

• Discovery channels : $H \rightarrow \gamma \gamma$, $ZZ(\rightarrow 4\ell)$, $WW(\rightarrow \ell \nu \ell \nu)$

Decays to jets or τ s are more difficult to separate from QCD background, but they are very important for the direct measurement of the coupling to fermions.

Rare decays

Higgs property measurement

 $\Lambda(\alpha) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$

 α parameters interests : mass(m_H), signal strengths(μ), coupling strengths(κ), ratios of coupling strengths(λ)

pdf: $m_{\gamma \gamma}(H \rightarrow \gamma \gamma)$ $m_{ZZ}(H \rightarrow ZZ),$ $m_T(H \rightarrow WW)$ θ nuisance parameters

Summary of the VBF-strength

JP=0+ v.s. 1+ /1-

arXiv:1307.1432

29

ZZ* \rightarrow 4 lepton and WW $\rightarrow \ell \nu \ell \nu$ are sensitive for this study

• $\gamma \gamma$ decay is forbidden (Landau-Yang theorem)

For same reason, J=1 boson is produced only from qqbar annihilation

 $ZZ^* \rightarrow 4$ lepton : uses BDT from the inputs of m₁₂, m₃₄, and 5 angles

WW $\rightarrow e \nu \mu \nu$: uses 2 BDTs from the inputs of m_T, $\Delta \phi_{\ell \ell}$, m_{\ell \ell}, and p_T^{\ell \ell}

• Classifier 1 : Distinguishes the $J^P=0^+$ from sum of the all backgrounds

• Classifier 2 : Distinguishes the $J^{P}=1^{+}$, 1^{-} from sum of the all backgrounds

Spin-Parity summary

arXiv:1307.1432

 $J^P=0^-$ is excluded at 97.8% CL by $ZZ \rightarrow 4$ lepton channel

J^P=1⁻ is excluded at 99.97% CL by ZZ \rightarrow 4 lepton and WW \rightarrow e $\nu \mu \nu$ channels

JP=1+ is excluded at 99.7% CL by ZZ \rightarrow 4 lepton and WW \rightarrow e $\nu \mu \nu$ channels

- $J^{P}=2^{+}$ is excluded at 99.9% CL by ZZ \rightarrow 4 lepton, WW $\rightarrow e \nu \mu \nu$, and $\gamma \gamma$ channels
 - It can be produced via gluon-gluon or qqbar annihilation
 - 2⁺ is tested as a function of f_{qq} = fraction of qq/gg produced signals

- fqq=4% at LO for 2+m minimal model

30

Production diagrams

 \bar{q}'

q

 \bar{q}'

q

H

