**LHC News** 

## ~ The latest results from ATLAS ~

# Makoto Tomoto Nagoya University







#### Introduction

### • The (selected) latest ATLAS results of

- The standard model measurements
- > Higgs boson searches
- > New physics searches
- Future plans
- Summary





**SM physics** 

**Higgs searches** 

**New physics** 

- The standard model describes phenomena observed so far
- Higgs mechanism in SM is an effective description of EWSB, but Higgs boson has not been discovered yet

 $\rightarrow$  It is essential to discover the Higgs boson

- The SM breaks down at a certain energy scale
  - > Hierarchy : quadratic divergence of the Higgs mass,

Weak scale << Plank scale

- > What is the underlying nature of EWSB?
- Dark matter cannot be explained by SM

→New physics should exist to explain the particle physics at TeV scale

- ATLAS experiment aims at discovering
  - > the new phenomena by precise measurements of the SM,
  - the Higgs boson(s), and
  - the new physics beyond the SM directly (SUSY?, ED?)



## **LHC-ATLAS** experiment





#### 6 collisions/crossing



We made much progress on understanding detector performance with pileups

## $Z \rightarrow \mu\mu$ event with 11 collisions





## Standard model measurements



























- We are moving on new phenomena searches from the precise measurements of QCD and Electroweak physics
  - > W charge symmetry, Triple gauge coupling...
  - >  $t\bar{t}$  resonance, t  $\rightarrow$  H<sup>±</sup>b decays, bare quark V-A interaction...
  - > ...
- Success of the well-know SM measurements allows us to look for Higgs boson and new physics BSM

# Higgs boson searches

## **Higgs production and decay**

ATLA







## **Higgs searches at ATLAS**



SM

 $\begin{matrix} I=e, \mu \\ \nu=\nu_e, \nu_\mu, \nu_\tau \end{matrix}$ 

q = udscb

400 500

M<sub>н</sub> [GeV]

HC HIGGS XS WG 201

III









- Event selection
  - > Two high quality isolated  $\gamma$
  - p<sub>T1</sub>>40GeV, p<sub>T2</sub>>25GeV
- Background (from control sample)
  - > pp  $\rightarrow$   $\gamma\gamma+X$  (irreducible)
  - > pp  $\rightarrow$   $\gamma$ -jet, jet-jet +X (reducible)
  - Estimated from control samples isolation and identification criteria
- Events are classified into 5 categories
  - direction of γ in η,
  - converted or unconverted
- Fit is performed to extract # singal
  - Exponential (background)
  - Crystal ball (signal)







## H→WW→IvIv : L=1.7 fb<sup>-1</sup>



- Event selection
  - > high- $p_T$  opposite sign 2 leptons
  - ➤ large E<sub>T</sub><sup>miss</sup>
  - > Events are divided into two categories
    - WW with 0 jet (jet veto)
    - WW with 1 jet with pT>25GeV lηl<4.5
  - > Topological cuts ( $p_T^{\parallel}$ ,  $m^{\parallel}$ ,  $\Delta \phi^{\parallel}$ )

> 0.75 × m<sub>H</sub> < m<sub>T</sub> < m<sub>H</sub>

$$m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 - (P_T^{\ell\ell} + P_T^{miss})^2}$$

• Backgrounds

- > WW diboson
- > top quark
- > W+jets













### Event selection

> 2 isolated same-flavor leptons, Z mass window cuts

#### > For $H \rightarrow ZZ \rightarrow 4I$

- Another isolated same-flavor lepton pair
- $m_{41}$  is the final discriminating variable

#### For H→ZZ→llqq

- third lepton veto
- at least 2 jets
- E<sub>T</sub><sup>miss</sup><50GeV
- $m_{IIJJ}$  is the final discriminating variable

#### > For $H \rightarrow ZZ \rightarrow IIvv$

- third lepton veto
- $E_T^{miss} > 66$  (82) GeV, depending on the "low" ("high") mass analysis
- $\ensuremath{\mathsf{m}_{\mathsf{T}}}$  is the final discriminating variable

$$m_T^2 \equiv \left[\sqrt{m_Z^2 + |\vec{P}_T^{ll}|^2} + \sqrt{m_Z^2 + |\vec{P}_T^{miss}|^2}\right]^2 - \left[\vec{P}_T^{ll} + \vec{P}_T^{miss}\right]^2$$



## H→ZZ: L=2.2, 1.04 fb<sup>-1</sup>







### **Limit for each channel**







### **Combined limit**





# New physics searches



## This talk will cover

Standard particles



- Supersymmetry (with E<sub>T</sub><sup>miss</sup>)
  - $\rightarrow$ Decays end up with LSP
    - > Jets +  $E_T^{miss}$ 
      - Squark and Gluino production is dominant
    - > Lepton + Jets +  $E_T^{miss}$ 
      - leptons from Charginos, Slepton, W/Z
    - >  $3^{rd}$  generation (b-jets+ $E_T^{miss}$ )
      - gluinos preferentially decay to 3<sup>rd</sup> generation
      - direct production require >1fb<sup>-1</sup>
- Heavy particle resonances
  - $\rightarrow$  Predicted by numerous extension of the SM
    - > dilepton
      - Randall Sundrum KK graviton, GUT-inspired Z'...
    - > Dijet
      - Exited quark, strong gravity, contact interaction









q

 $ilde{\chi}_1^0$ 

- Cut on p<sub>T</sub> of jets, E<sub>T</sub><sup>miss</sup>
  - Signal regions are optimized to maximize sensitivity to different production processes
- Main backgrounds are W/Z+jets, top quark, multijet
  - Estimated from one or more dedicated control regions







## SUSY: 1 Lepton + jets + E<sub>T</sub><sup>miss</sup>



 $ilde{\chi}_1^0$ 

- Event selection (4 signal regions)
  - > Exactly one isolated high  $p_T$  lepton (from chagino,slepton, W/Z<sup>2</sup>
    - suppress QCD background, help in trigger
  - > 3 or 4 jets
- Backgrounds

> W+jets, multijets, top quarks (data driven estimation with support of MC)





## **SUSY : b-jets + E**<sub>T</sub><sup>miss</sup>



 $\tilde{g} \rightarrow \tilde{b}b \rightarrow bb\tilde{\chi}_1^0$ 

 $\widetilde{g}$ 

g

00000000

00000000

g

- Event selections (4 signal regions)
  - > 3 high pT jets
  - ➤ E<sub>T</sub><sup>miss</sup> > 130 GeV
  - > ≥ 1 b-jets or ≥ 2 b-jets
- Backgrounds

> W/Z+jets, top quark (from MC), multijet (derived from data)



## TLAS Heavy resonance search : dilepton

Benchmark models for Z'

> Sequential SM (i.e. same coupling to fermions as Z)

- GUT-inspired heavy Z'
- > Randall-Sundrum Kaluza-Klein graviton excitation ( $G^*$ )
- Event selection
  - Isolated same flavor lepton pair

reconstruction of high pT of lepton is challenging









## Heavy resonance search : Dijet

- Benchmark models
  - Exited quarks (q\*)
  - > axigluons
  - Color octet scalar
- Analysis

ATLAS

Japan 🎍

Look for the resonance above phenomenological fit of the m<sub>jj</sub> data













## Summary of the current searches



ATLAS Searches\* - 95% CL Lower Limits (Status: SUSY 2011) MSUGRA/CMSSM : 0-lep + j's + ET miss Gev ã = ã mass MSUGRA/CMSSM : 1-lep + j's + ET.miss ars Gev q̃ = g̃ mass ATLAS MSUGRA/CMSSM : multijets + ET miss 680 GeV  $\tilde{q}$  mass (for  $m(\tilde{q}) = 2m(\tilde{q})$ ) Preliminary Simpl. mod. (light  $\tilde{\chi}_{x}^{u}$ ) : 0-lep + j's +  $E_{T \text{ miss}}$ .075 TeV q = q mass Simpl. mod. (light  $\tilde{\chi}_{*}$ ) : 0-lep + j's +  $E_{\tau \text{ miss}}$ aso Gev ã mass Simpl. mod, (light  $\tilde{\chi}_{s}^{*}$ ) : 0-lep + j's +  $E_{T,miss}$ 800 Gev g mass  $Ldt = (0.031 - 1.60) \text{ fb}^{-1}$ Simpl. mod. (light  $\overline{\chi}_{*}^{0}$ ): 0-lep + b-jets + j's +  $E_{T,miss}$ 720 GeV g mass (for m(b) < 600 GeV) Simpl. mod.  $(\tilde{g} \rightarrow t t \tilde{\chi}_{*})$ : 1-lep + b-jets + j's +  $E_{T,miss}$ 40 GeV  $\tilde{q}$  mass (for  $m(\tilde{\chi}) < 80$  GeV)  $\sqrt{s} = 7 \text{ TeV}$ SUSY Pheno-MSSM (light  $\tilde{\chi}_{i}^{0}$ ) : 2-lep SS +  $E_{T,miss}$ 690 Gev q mass Pheno-MSSM (light  $\tilde{\chi}_{s}^{0}$ ) 2-lep OS<sub>ee</sub> +  $E_{T,miss}$ 558 Gev ã mass Simpl. mod.  $(\tilde{\mathbf{g}} \rightarrow \mathbf{q} \tilde{\mathbf{q}} \chi^{\pm})$ : 1-lep +  $\tilde{j}$ 's +  $E_{T,miss}$ GMSB (GGM) + Simpl. model :  $\gamma\gamma$  +  $E_{T,miss}$  $\tilde{\chi}^{\circ}$  mass (for  $m(\tilde{q}) < 600$  GeV,  $(m(\tilde{\chi}^{\pm}) - m(\tilde{\chi}^{\circ})) / (m(\tilde{q}) - m(\tilde{\chi}^{\circ})) > 1/2)$ 776 Gev g mass (for m(bino) > 50 GeV) GMSB : stable ₹ ) [arXiv:1106.44956 GeV 7 mass 562 Gev ĝ mass Stable massive particles : R-hadrons b mass Stable massive particles : R-hadrons t mass Stable massive particles : R-hadrons Hypercolour scalar gluons : 4 jets,  $m_{ij} \approx m_{kl}$ sgluon mass (excl:  $m_{sq} \le 100 \text{ GeV}, m_{sq} = 140 \pm 3 \text{ GeV}$ ) RPV ( $\lambda_{311}^{*}=0.01, \lambda_{312}^{*}=0.01$ ) : high-mass eµ 440 GeV V mass Large ED (ADD) : monojet UED :  $\gamma\gamma + E_{T,miss}$ 3.2 TeV M<sub>O</sub> (δ=2) =1.00 fb<sup>-1</sup> (2011) [ATLAS-CONF-2011-09 1.22 TeV Compact. scale 1/R Extra dimensions RS with  $k/M_{Pl} = 0.1$  : diphoton,  $m_{yy}$ Graviton mass #36 nb<sup>-1</sup> (2010) [ATLAS-CONE-2011-044 RS with  $k/M_{Pl} = 0.1$ : dilepton,  $m_{ee/\mu\mu}$ RS with  $g_{norkk}/g_s = 0.20$ :  $H_T + E_{T,miss}$ 1.63 Tev Graviton mass KK gluon mass Quantum black hole (QBH) :  $m_{\text{dilet}}, F(\chi)$ 3.67 TeV M<sub>O</sub> (δ=6) QBH : High-mass  $\sigma_{t+x}$ 2.35 TeV M ADD BH  $(M_{th}/M_D=3)$  : multijet  $\Sigma p_{T}, N_{iets}$ 1.37 TeV M<sub>D</sub> (δ=6) ADD BH (Mtt/MD=3) : SS dimuon Nch. part. .20 TeV M<sub>O</sub> (δ=6) LQ Z' / W'Ct. I. qqqq contact interaction :  $F_{\gamma}(m_{diat})$ 6.7 TeV A qquu contact interaction : m 4.9 TeV A SSM : mee/uu 1.83 Tev Z' mass SSM : m<sub>Le/u</sub> 2.15 TeV W' mass Scalar LQ pairs ( $\beta$ =1) : kin. vars. in eejj, evjj 1<sup>st</sup> gen, LQ mass Scalar LQ pairs ( $\beta$ =1) : kin. vars. in µµjj, µvjj 2<sup>nd</sup> gen. LQ mass  $4^{\text{th}}$  generation : coll. mass in Q  $\overline{Q} \rightarrow W g W g$ Q, mass 4<sup>th</sup> generation : d d → WtŴt (2-lep SS) d, mass  $T\overline{T}_{4th \text{ gen.}} \rightarrow t\overline{t} + A_0A_0^4$ : 1-lep + jets +  $E_{T,miss}$ Major. neutr. (LRSM, no mixing): 2-lep + jets 20 Gev T mass 180 GeV N mass (m(W)) = 1 TeV) Other Major. neutr. (LRSM, no mixing) : 2-lep + jets H<sup>±</sup><sub>L</sub> (DY prod., BR(H<sup>±</sup>→μμ)=1) : m<sub>μμ</sub> (like elen) .350 TeV W mass (230 < m(N) < 700 GeV) 75 Gev H<sup>±±</sup> mass →µµ)=1): m Excited quarKs: m<sub>dijet</sub> at Tev q\* mass Axigluons : m<sub>dilet</sub> 3.21 TeV Axigluon mass Color octet scalar : mdijet Scalar resonance mass . . . . . . 1 1 1 1

 $10^{-1}$ 

1

Mass scale [TeV]

10

\*Only a selection of the available results leading to mass limits shown

## Summary of the current searches





lapan

Mass scale [TeV]

# Future plan



## 10 years plan







HL-LHC peak luminosity 5×10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> longer lifetime



Goal: 200~300fb<sup>-1</sup>/year 3000fb<sup>-1</sup> in total??



## **Future Plans**



- ۴\_ • by 2012 Integrated Luminosity, > 3 $\sigma$  observation of Higgs up to 120 GeV will be achieved (only ATLAS) > SUSY ~ 1TeV • From  $2014 - 2021(\sqrt{s}=13 - 14 \text{TeV})$ 100 More searches for new physics ∧ 11. > Higgs property measurements Yukawa-coupling • HL-LHC (<3000fb<sup>-1</sup>) 101 > Can add  $H \rightarrow \mu \mu$  for Yukawa coupling
  - Can add H→µµ for Yukawa measurement?
  - New physics using high-x partons
    - advantage of p-p collider









- LHC is delivering data of p-p collision so well
- ATLAS has produced an impressive number of results
  - Most standard model process has been measured
  - > High mass Higgs starts excluding
  - > Large parameter space of the new physics starts excluding
- Unfortunately, new physics didn't seem to be around the corner
- We have many rooms to be explore
  - > more 7 TeV or 8 TeV collision data until 2012
  - > 13-14 TeV data from 2014 to 2012
  - > HL-LHC will follow

# **Backup slides**







- 3.8T solenoid containing calorimeters
- Silicon tracker:  $\sigma(p_T)/p_T \sim 15\%$  at 1TeV
- EM cal: homogeneous Lead-Tungstate crystal, σ<sub>E</sub>/E ~ 3%/√E[GeV] ⊕ 0.5%
- HAD cal: Brass-scint., ≥7λ<sub>0</sub> σ<sub>E</sub>/E ~ 100%/√E[GeV] **Φ** 5%
- Iron return yoke muon spectrometer
- 2T solenoid inside calorimeters
- Silicon+TRT tracker + electron ID
- EM cal: Longitudinally segmented Lead-Ar: σ<sub>E</sub>/E ~ 10%/√E[GeV] ⊕ 0.7%
- HAD cal: Fe-scint + Cu-Ar, ≥11 $\lambda_0$  $\sigma_E/E \sim 50\%/\sqrt{E[GeV]}$  ⊕ 3%
- Air-toroid muon sp.:  $\int \sqrt{B.dl} = 1$  to 7 T.m



diboson production : pp→WZ

#### Most standard model processes have been already measured.

ATLAS

Japan







Event selection

ATLAS

Japan.

- > W→lv or Z→l+l-
- > exactly two b-jets with  $p_T>25GeV$
- Backgrounds

| > | W+jets, | Z+jets, | top | quark, | multijet |
|---|---------|---------|-----|--------|----------|
|---|---------|---------|-----|--------|----------|

| WН                                                                           | expected                                                         | d                                                                                           |                                                   |                  |                                                     |
|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-----------------------------------------------------|
| Source                                                                       | events                                                           |                                                                                             | (stat.)                                           |                  | (sys.)                                              |
| Z+jets                                                                       | 54.4                                                             | ±                                                                                           | 3.9                                               | ±                | 12.3                                                |
| W+jets                                                                       | 466.7                                                            | ±                                                                                           | 1.4                                               | ±                | 66.5                                                |
| Top-quark                                                                    | 1141.8                                                           | ±                                                                                           | 8.8                                               | ±                | 78.0                                                |
| Multijet                                                                     | 193.0                                                            | ±                                                                                           | 9.4                                               | ±                | 96.5                                                |
| WZ                                                                           | 16.1                                                             | ±                                                                                           | 2.2                                               | ±                | 3.4                                                 |
| WW                                                                           | 4.8                                                              | ±                                                                                           | 1.1                                               | ±                | 1.4                                                 |
| Total background                                                             | 1876.8                                                           | ±                                                                                           | 13.7                                              | ±                | 147.2                                               |
| Data                                                                         | 1888                                                             |                                                                                             |                                                   |                  |                                                     |
|                                                                              | 1                                                                |                                                                                             |                                                   |                  |                                                     |
|                                                                              | expecte                                                          | ed                                                                                          |                                                   |                  |                                                     |
| ZH Source                                                                    | expecte<br>events                                                | ed                                                                                          | (stat.)                                           |                  | (sys.)                                              |
| ZH Source<br>Z+jets                                                          | expecte<br>events<br>261.0                                       | ed<br>±                                                                                     | (stat.)<br>7.8                                    | ±                | (sys.)<br>24.6                                      |
| ZH Source<br>Z+jets<br>Top-quark                                             | expecte<br>events<br>261.0<br>52.0                               | ed<br>±<br>±                                                                                | (stat.)<br>7.8<br>1.3                             | ±<br>±           | (sys.)<br>24.6<br>10.6                              |
| ZH Source<br>Z+jets<br>Top-quark<br>Multijet                                 | expecte<br>events<br>261.0<br>52.0<br>1.4                        | ed<br>±<br>±<br>±                                                                           | (stat.)<br>7.8<br>1.3<br>0.4                      | ±<br>±<br>±      | (sys.)<br>24.6<br>10.6<br>1.4                       |
| ZH Source<br>Z+jets<br>Top-quark<br>Multijet<br>ZZ                           | expecte<br>events<br>261.0<br>52.0<br>1.4<br>9.2                 | 2d<br>±<br>±<br>±<br>±                                                                      | (stat.)<br>7.8<br>1.3<br>0.4<br>1.1               | ±<br>±<br>±      | (sys.)<br>24.6<br>10.6<br>1.4<br>2.3                |
| ZH Source<br>Z+jets<br>Top-quark<br>Multijet<br>ZZ<br>WZ                     | expecte<br>events<br>261.0<br>52.0<br>1.4<br>9.2<br>1.1          | 2d<br>±<br>±<br>±<br>±<br>±                                                                 | (stat.)<br>7.8<br>1.3<br>0.4<br>1.1<br>0.3        | ±<br>±<br>±<br>± | (sys.)<br>24.6<br>10.6<br>1.4<br>2.3<br>0.3         |
| ZH Source<br>Z+jets<br>Top-quark<br>Multijet<br>ZZ<br>WZ<br>Total background | expecte<br>events<br>261.0<br>52.0<br>1.4<br>9.2<br>1.1<br>324.7 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | (stat.)<br>7.8<br>1.3<br>0.4<br>1.1<br>0.3<br>8.0 | ±<br>±<br>±<br>± | (sys.)<br>24.6<br>10.6<br>1.4<br>2.3<br>0.3<br>27.9 |















### • $H \rightarrow \tau \tau \rightarrow I \tau_{had} 3v$ (lepton-hadron)

- Event selections
  - one lepton from
  - 1 or 3 tracks in a calorimeter jet
  - $E_T^{miss} > 20 GeV$
  - MT(I, E<sub>T</sub><sup>miss</sup>)< 30 GeV







## Yields (Higgs analysis)



|      | $H  ightarrow 	au^+ 	au^-$ |                          |                              |                        | $H \rightarrow W$ | $WW^{(*)}$ | $H \rightarrow ZZ^{(*)}$ |         |      |
|------|----------------------------|--------------------------|------------------------------|------------------------|-------------------|------------|--------------------------|---------|------|
|      | <i>E</i> . <i>E</i> . 1    | ToTal ist                | $H  ightarrow \gamma \gamma$ | $H  ightarrow b ar{b}$ | lv                | ℓv         | 0000                     | 00,,,,, | llaa |
|      | lehad                      | $u_{\ell}u_{\ell} + Jei$ |                              |                        | 0-jet             | 1-jet      | <i>cece</i>              | eev v   | есqq |
|      |                            |                          |                              | $m_{H}=120$            | GeV               |            |                          |         |      |
| S    | 8.0                        | 0.8                      | 15.9                         | 5.5                    | 3.9               | 1.4        | 0.2                      | -       | -    |
| b    | 1218                       | 47.1                     | 723                          | 992                    | 36.5              | 12.9       | 0.6                      | -       | -    |
| Nobs | 1072                       | 46                       | 787                          | 1131                   | 47                | 14         | 0                        | -       | -    |
|      |                            |                          |                              | $m_{H} = 150$          | GeV               |            |                          |         |      |
| S    | -                          | -                        | 6.9                          | -                      | 33.8              | 11.9       | 2.0                      | -       | -    |
| b    | -                          | -                        | 416                          | -                      | 53.4              | 23.4       | 0.6                      | -       | -    |
| Nobs | -                          | -                        | 405                          | -                      | 70                | 23         | 1                        | -       | -    |
|      |                            |                          |                              | $m_{H}=200$            | GeV               |            |                          |         |      |
| S    | -                          | -                        | -                            | -                      | 13.9              | 6.5        | 5.2                      | 4.5     | 31.4 |
| b    | -                          | -                        | -                            | -                      | 39.6              | 25.1       | 5.7                      | 62.0    | 7433 |
| Nobs | -                          | -                        | -                            | -                      | 36                | 28         | 5                        | 54      | 7225 |
|      |                            |                          |                              | $m_H = 300$            | GeV               |            |                          |         |      |
| S    | -                          | -                        | -                            | -                      | 11.3              | 7.1        | 3.3                      | 9.1     | 6.8  |
| b    | -                          | -                        | -                            | -                      | 120.6             | 76.3       | 4.5                      | 42.3    | 195  |
| Nobs | -                          | -                        | -                            | -                      | 130               | 78         | 4                        | 38      | 200  |
|      |                            |                          |                              | $m_{H}=400$            | GeV               |            |                          |         |      |
| S    | -                          | -                        | -                            | -                      | -                 | -          | 2.3                      | 9.0     | 9.8  |
| b    | -                          | -                        | -                            | -                      | -                 | -          | 4.1                      | 33.1    | 207  |
| Nobs | -                          | -                        | -                            | -                      | -                 | -          | 2                        | 45      | 239  |

**Systematic uncertainties (Higgs)** 

ATLAS Japan

| page4  |
|--------|
| page I |

|                           | $H  ightarrow 	au^+ 	au^-$ |                                |                               | $U \wedge b\bar{b}$  | $H \rightarrow WW^{(*)}$ | $H \rightarrow ZZ^{(*)}$ |                  |                  |
|---------------------------|----------------------------|--------------------------------|-------------------------------|----------------------|--------------------------|--------------------------|------------------|------------------|
|                           | $	au_\ell 	au_{had}$       | $\tau_{\ell}\tau_{\ell} + jet$ | $H \rightarrow \gamma \gamma$ | $\Pi \rightarrow bb$ | $\ell \nu \ell \nu$      | lll                      | $\ell\ell vv$    | llqq             |
| Luminosity                | ±3.7                       | ±3.7                           | ±3.7                          | ±3.7                 | ±3.7                     | ±3.7                     | ±3.7             | ±3.7             |
| e/γ eff.                  | ±3.5                       | $^{+2.0}_{-2.1}$               | $^{+11.6}_{-10.4}$            | ±2.3                 | $\pm 2.2$                | ±3.3                     | $\pm 1.2$        | ±1.1             |
| $e/\gamma$ E. scale       | $^{+1.3}_{-0.1}$           | $^{+0.2}_{-0.5}$               | -                             | $^{+1.5}_{-1.6}$     | $\pm 0.1$                | -                        | $^{+0.8}_{-1.1}$ | -                |
| $e/\gamma$ res.           | -                          | ±3.7                           | -                             | $^{+2.1}_{-1.5}$     | $\pm 0.1$                | -                        | -                | -                |
| $\mu$ eff.                | $\pm 1.0$                  | $^{+2.0}_{-2.1}$               | -                             | $^{+1.1}_{-2.0}$     | $\pm 0.6$                | $\pm 1.2$                | $^{+0.8}_{-0.7}$ | ±0.6             |
| $\mu$ res.                | -                          | $^{+0.4}_{-0.6}$               | -                             | $\pm 5.8$            | ±1.6                     | -                        | -                | -                |
| Jet/ $\tau$ /MET E. scale | $^{+19}_{-16}$             | $+3.3 \\ -10.0$                | -                             | $^{+21}_{-17}$       | ±6.1                     | -                        | $^{+5.9}_{-4.0}$ | +3.7<br>-10.4    |
| JER                       | -                          | $\pm 2.0$                      | -                             | $\pm 2.5$            | $^{+2.2}_{-1.8}$         | -                        | -                | $^{+2.1}_{-0.0}$ |
| MET                       | -                          | +4.4 -5.3                      | -                             | +5.5 -6.1            | -                        | $\pm 0.6$                | +6.6<br>-4.2     | -                |
| <i>b</i> -tag eff.        | -                          | -                              | -                             | +37<br>-33           | $\pm 0.1$                | -                        | +4.3<br>-4.4     | -                |



### list of models × signatures



1 jet + MET Many extensions of the SM have been **Experimentally**, iets + MET developed over the past decades: a signature 1 lepton + MET standpoint Supersymmetry<sup>\*</sup> Same-sign di-lepton makes a lot of **Dilepton resonance** Extra-Dimensions sense: **Diphoton resonance** Technicolor(s) Diphoton + MET Little Higgs ✓ practical Multileptons Lepton-jet resonance No Higgs Lepton-photon resonance 🗸 less model-GUT Gamma-jet resonance dependent Diboson resonance Hidden Valley Z+MET important to Leptoquarks W/Z+Gamma resonance cover every Top-antitop resonance **Compositeness** possible Slow-moving particles 4<sup>th</sup> generation (t', b') signature Long-lived particles Top-antitop production LRSM, heavy neutrino Lepton-Jets etc... Microscopic blackholes Dijet resonance etc... (for illustration only)





1 jet + MET Many extensions of the SM have been iets + MET developed over the past decades. 1 lepton + MET Supersymmetry Same-sign di-lepton **Dilepton resonance** Extra-Dimensions **Diphoton resonance** Technicolor(s) Diphoton + MET **Multileptons** Little Higgs Lepton-jet resonance No Higgs Lepton-photon resonance GUT Gamma-jet resonance Diboson resonance Hidden Valley Z+MET Leptoquarks W/Z+Gamma resonance Top-antitop resonance Compositeness Slow-moving particles 4<sup>th</sup> generation (t', b') Long-lived particles Top-antitop production LRSM, heavy neutrino Lepton-Jets • etc... Microscopic blackholes **Dijet resonance** etc... (for illustration only)

From LP2011 presented by Henri Bachacou

#### ATLAS Japan

### W' searches



Benchmark models for Z'

> Sequential SM (i.e. same coupling to fermions as W)

Event selection

> One Isolated lepton & large  $E_T^{miss}$ 





Mass of W'<sub>SSM</sub> up to 2.15 TeV is excluded at 95% C.L.



Japan



Table 12: Numbers of expected events after all cuts for the signal ( $m_H = 110 - 170$  GeV) and the total background in the H + 0 jet channel for an integrated luminosity of 1.7 fb<sup>-1</sup>. The observed numbers of events are also shown. The nominal numbers correspond to the background estimations described in Sections 6 and 7. Also shown are the signal and background values resulting from the fit for two different scenarios, without any signal (signal strength  $\mu = 0$ ) and with the signal present (signal strength  $\mu = 1$ ).

|             | Nominal        |        | Fit w      | $ith \mu = 0$ | Fit w      |        |            |          |
|-------------|----------------|--------|------------|---------------|------------|--------|------------|----------|
| $m_H$ [GeV] | Lepton Flavors | Signal | Total Bkg. | Signal        | Total Bkg. | Signal | Total Bkg. | Observed |
|             | ee             | 0.043  | 3.2        | 0             | 3.1        | 0.046  | 3.1        | 0        |
| 110         | еµ             | 0.41   | 12.1       | 0             | 11.8       | 0.44   | 11.6       | 17       |
|             | μμ             | 0.26   | 9.5        | 0             | 9.3        | 0.27   | 9.2        | 12       |
|             | ee             | 0.13   | 3.6        | 0             | 3.5        | 0.15   | 3.4        | 0        |
| 115         | еµ             | 1.10   | 15.9       | 0             | 15.3       | 1.20   | 14.8       | 21       |
|             | μμ             | 0.73   | 10.6       | 0             | 10.3       | 0.78   | 10.0       | 14       |
|             | ee             | 0.39   | 4.6        | 0             | 4.6        | 0.43   | 4.5        | 4        |
| 120         | еµ             | 2.1    | 18.3       | 0             | 18.3       | 2.3    | 17.3       | 22       |
|             | μμ             | 1.42   | 13.4       | 0             | 13.6       | 1.55   | 13.0       | 21       |
|             | ee             | 0.93   | 6.0        | 0             | 5.9        | 1.03   | 5.6        | 4        |
| 125         | еµ             | 4.3    | 21.3       | 0             | 20.8       | 4.7    | 18.8       | 22       |
|             | μμ             | 2.6    | 15.3       | 0             | 15.2       | 2.9    | 14.0       | 23       |
|             | ee             | 1.48   | 7.1        | 0             | 7.0        | 1.63   | 6.4        | 5        |
| 130         | еµ             | 6.1    | 23.9       | 0             | 23.7       | 6.8    | 20.4       | 24       |
|             | μμ             | 4.4    | 16.4       | 0             | 16.6       | 4.8    | 14.5       | 26       |
|             | ee             | 2.3    | 7.6        | 0             | 7.4        | 2.6    | 6.4        | 7        |
| 135         | еµ             | 8.8    | 25.0       | 0             | 24.2       | 9.8    | 19.5       | 23       |
|             | μμ             | 6.2    | 17.3       | 0             | 17.2       | 6.9    | 13.9       | 26       |
|             | ee             | 3.1    | 8.1        | 0             | 8.2        | 3.4    | 6.6        | 8        |
| 140         | еµ             | 12.1   | 26.0       | 0             | 26.5       | 13.2   | 20.0       | 26       |
|             | μμ             | 8.4    | 17.3       | 0             | 18.0       | 9.2    | 13.4       | 28       |
|             | ee             | 4.1    | 8.4        | 0             | 8.6        | 4.4    | 6.7        | 8        |
| 145         | еµ             | 14.5   | 27.3       | 0             | 28.2       | 15.4   | 20.5       | 27       |
|             | μμ             | 9.4    | 17.3       | 0             | 18.3       | 10.0   | 13.1       | 30       |
|             | ee             | 5.2    | 8.4        | 0             | 8.9        | 5.3    | 6.5        | 9        |
| 150         | еµ             | 17.5   | 27.7       | 0             | 29.8       | 18.1   | 20.7       | 32       |
|             | μμ             | 11.1   | 17.3       | 0             | 19.0       | 11.5   | 12.8       | 29       |
|             | ee             | 7.0    | 8.2        | 0             | 8.1        | 7.0    | 4.1        | 8        |
| 155         | еµ             | 21.2   | 26.9       | 0             | 26.5       | 21.2   | 13.1       | 27       |
|             | μμ             | 13.3   | 17.3       | 0             | 17.3       | 13.7   | 7.2        | 24       |
|             | ee             | 8.4    | 7.9        | 0             | 8.0        | 7.8    | 3.4        | 6        |
| 160         | еµ             | 26.4   | 26.1       | 0             | 26.6       | 24.7   | 10.2       | 30       |
|             | μμ             | 17.4   | 15.6       | 0             | 16.0       | 16.9   | 4.2        | 22       |
|             | ee             | 9.1    | 7.3        | 0             | 7.4        | 8.2    | 2.4        | 6        |
| 165         | еµ             | 27.4   | 24.6       | 0             | 25.0       | 25.4   | 8.1        | 29       |
|             | μμ             | 17.2   | 14.8       | 0             | 15.1       | 15.9   | 3.8        | 20       |
|             | ee             | 10.5   | 12.6       | 0             | 13.7       | 11.1   | 6.5        | 13       |
| 170         | еµ             | 31.4   | 40.1       | 0             | 44.3       | 33.2   | 20.5       | 52       |
|             | μμ             | 19.1   | 24.8       | 0             | 27.7       | 20.6   | 10.4       | 33       |



## WW yields



Table 13: Numbers of expected events after all cuts for the signal ( $m_H = 175 - 300 \text{ GeV}$ ) and the total background in the H + 0 jet channel for an integrated luminosity of 1.7 fb<sup>-1</sup>. The observed numbers of events are also shown. The nominal numbers correspond to the background estimations described in Sections 6 and 7. Also shown are the signal and background values resulting from the fit for two different scenarios, without any signal (signal strength  $\mu = 0$ ) and with the signal present (signal strength  $\mu = 1$ ).

|             |                | Nominal |            | Fit with $\mu = 0$ |            | Fit w  |            |          |
|-------------|----------------|---------|------------|--------------------|------------|--------|------------|----------|
| $m_H$ [GeV] | Lepton Flavors | Signal  | Total Bkg. | Signal             | Total Bkg. | Signal | Total Bkg. | Observed |
|             | ee             | 8.8     | 11.5       | 0                  | 11.9       | 9.3    | 5.7        | 12       |
| 175         | еµ             | 25.5    | 37.0       | 0                  | 38.6       | 27.2   | 18.3       | 44       |
|             | μμ             | 16.0    | 23.5       | 0                  | 24.6       | 17.3   | 9.7        | 28       |
|             | ee             | 6.9     | 10.4       | 0                  | 10.6       | 7.4    | 5.7        | 10       |
| 180         | еµ             | 20.7    | 33.6       | 0                  | 34.8       | 22.5   | 18.3       | 41       |
|             | μμ             | 12.8    | 21.6       | 0                  | 22.3       | 14.1   | 10.6       | 25       |
|             | ee             | 5.1     | 9.1        | 0                  | 8.9        | 5.7    | 5.0        | 10       |
| 185         | еµ             | 15.2    | 29.9       | 0                  | 29.8       | 16.9   | 16.7       | 37       |
|             | μμ             | 10.1    | 19.5       | 0                  | 19.0       | 11.3   | 9.9        | 17       |
|             | ee             | 3.9     | 8.0        | 0                  | 7.6        | 4.4    | 4.7        | 10       |
| 190         | еµ             | 11.3    | 26.3       | 0                  | 25.5       | 12.8   | 15.8       | 33       |
|             | μμ             | 7.5     | 17.3       | 0                  | 16.4       | 8.5    | 9.3        | 12       |
|             | ee             | 3.0     | 6.9        | 0                  | 6.4        | 3.4    | 4.4        | 8        |
| 195         | еµ             | 8.9     | 23.2       | 0                  | 21.8       | 10.0   | 15.2       | 27       |
|             | μμ             | 5.7     | 15.2       | 0                  | 14.1       | 6.4    | 9.4        | 12       |
| 200         | ee             | 2.4     | 5.8        | 0                  | 5.0        | 2.7    | 3.2        | 7        |
| 200         | еµ             | 7.0     | 20.3       | 0                  | 17.5       | 8.0    | 11.5       | 20       |
|             | μμ             | 4.5     | 13.5       | 0                  | 11.4       | 5.2    | 6.8        | 9        |
| 220         | ee             | 3.3     | 25.2       | 0                  | 27.5       | 3.4    | 24.9       | 38       |
| 220         | еµ             | 15.0    | 144.5      | 0                  | 155.0      | 15.4   | 139.4      | 138      |
|             | μμ             | 3.3     | 49.4       | 0                  | 22.0       | 5.4    | 46.0       | 32       |
| 240         | ee             | 2.5     | 24.8       | 0                  | 27.8       | 2.0    | 25.6       | 45       |
| 240         | еµ             | 13.1    | 130.2      | 0                  | 141.0      | 15.4   | 130.5      | 12/      |
|             | <u> </u>       | 4./     | 47.4       | 0                  | 24.7       | 4.0    | 40.0       | 45       |
| 260         | ee             | 10.3    | 112.1      | 0                  | 116.2      | 2.0    | 107.0      | 102      |
| 200         | eμ             | 4.1     | 43.3       | 0                  | 45.6       | 10.0   | 42.4       | 43       |
|             | <u> </u>       | 2.2     | 21.0       | 0                  | 22.7       | 23     | 21.4       | 32       |
| 280         | ee<br>811      | 8.5     | 02.8       | ő                  | 08.4       | 86     | 02.4       | 86       |
| 200         | сµ<br>1111     | 3.2     | 37.3       | ŏ                  | 40.2       | 3.3    | 37.7       | 30       |
|             | PP             | 2.1     | 17.1       | 0                  | 10.1       | 2.1    | 17.9       | 28       |
| 300         | eu             | 6.6     | 71.1       | ŏ                  | 77.6       | 6.6    | 73.0       | 69       |
| 200         |                | 2.6     | 32.4       | ő                  | 35.7       | 2.6    | 33.6       | 33       |
|             |                | 2.0     | 3447       |                    | 2224       | 2.0    | 33.0       |          |



## WW yields



Table 14: Numbers of expected events after all cuts for the signal ( $m_H = 110 - 170$  GeV) and the total background in the H + 1 jet channel for an integrated luminosity of 1.7 fb<sup>-1</sup>. The observed numbers of events are also shown. The nominal numbers correspond to the background estimations described in Sections 6 and 7. Also shown are the signal and background values resulting from the fit for two different scenarios, without any signal (signal strength  $\mu = 0$ ) and with the signal present (signal strength  $\mu = 1$ ).

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | -           |                | <u> </u> | <u> </u>   | *      |               | · ·    |                | <u> </u> |
|----------------------------------------------------------|-------------|----------------|----------|------------|--------|---------------|--------|----------------|----------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   |             |                | No       | ominal     | Fit w  | $ith \mu = 0$ | Fit w  | $i th \mu = 1$ |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | $m_H$ [GeV] | Lepton Flavors | Signal   | Total Bkg. | Signal | Total Bkg.    | Signal | Total Bkg.     | Observed |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   |             | ee             | 0.020    | 0.87       | 0      | 0.88          | 0.019  | 0.87           | 2        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 110         | еµ             | 0.18     | 3.9        | 0      | 3.9           | 0.18   | 3.8            | 3        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 0.090    | 4.3        | 0      | 4.4           | 0.090  | 4.4            | 7        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 0.055    | 1.10       | 0      | 1.07          | 0.051  | 1.04           | 2        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 115         | еµ             | 0.43     | 5.0        | 0      | 4.7           | 0.42   | 4.5            | 3        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 0.21     | 4.7        | 0      | 4.7           | 0.20   | 4.6            | 7        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 0.14     | 1.23       | 0      | 1.25          | 0.13   | 1.19           | 3        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 120         | еµ             | 0.78     | 6.3        | 0      | 6.2           | 0.75   | 5.9            | 3        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 0.44     | 5.4        | 0      | 5.5           | 0.41   | 5.3            | 8        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 0.27     | 1.42       | 0      | 1.48          | 0.27   | 1.38           | 3        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 125         | еµ             | 1.39     | 7.2        | 0      | 7.4           | 1.41   | 6.8            | 6        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 0.82     | 6.5        | 0      | 6.7           | 0.84   | 6.4            | 10       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 0.40     | 1.57       | 0      | 1.67          | 0.38   | 1.45           | 3        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 130         | еµ             | 2.4      | 8.7        | 0      | 9.1           | 2.4    | 8.2            | 8        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 1.35     | 6.2        | 0      | 6.6           | 1.33   | 6.1            | 10       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   |             | ee             | 0.67     | 2.2        | 0      | 2.3           | 0.65   | 2.2            | 4        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 135         | еµ             | 3.2      | 9.8        | 0      | 10.2          | 3.1    | 9.0            | 9        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 1.90     | 6.5        | 0      | 6.9           | 1.85   | 6.3            | 11       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   |             | ee             | 1.01     | 2.4        | 0      | 2.6           | 0.79   | 2.3            | 3        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 140         | еµ             | 4.4      | 11.4       | 0      | 11.8          | 3.6    | 10.6           | 10       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 2.5      | 6.8        | 0      | 7.1           | 2.0    | 6.4            | 11       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 1.38     | 2.5        | 0      | 2.6           | 0.94   | 2.2            | 4        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 145         | еµ             | 5.3      | 12.5       | 0      | 12.6          | 3.6    | 11.7           | 10       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 3.0      | 7.7        | 0      | 7.9           | 2.0    | 7.2            | 9        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 1.68     | 2.8        | 0      | 2.9           | 0.99   | 2.5            | 5        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 150         | еµ             | 6.3      | 12.9       | 0      | 13.0          | 3.8    | 12.1           | 11       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 3.9      | 7.7        | 0      | 7.8           | 2.3    | 7.3            | 7        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 2.2      | 3.1        | 0      | 3.2           | 1.26   | 2.7            | 6        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $   | 155         | еµ             | 8.3      | 12.5       | 0      | 12.9          | 5.0    | 11.1           | 12       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | μμ             | 4.8      | 7.6        | 0      | 7.8           | 2.8    | 6.9            | 7        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    |             | ee             | 3.4      | 3.1        | 0      | 3.2           | 1.67   | 2.5            | 5        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | 160         | еµ             | 11.0     | 12.5       | 0      | 12.9          | 5.7    | 10.9           | 13       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$     |             | μμ             | 6.3      | 7.6        | 0      | 7.9           | 3.1    | 6.7            | 7        |
| 165 $e\mu$ 11.7 12.5 0 12.7 5.3 10.8 13                  | _           | ee             | 3.4      | 3.3        | 0      | 3.3           | 1.50   | 2.8            | 5        |
|                                                          | 165         | еµ             | 11.7     | 12.5       | 0      | 12.7          | 5.3    | 10.8           | 13       |
| $\mu\mu$ 0.7 7.6 0 7.6 3.1 6.7 5                         |             | μμ             | 6.7      | 7.6        | 0      | 7.6           | 3.1    | 6.7            | 5        |
| ee 3.9 6.5 0 6.6 1.83 6.0 7                              |             | ee             | 3.9      | 6.5        | 0      | 6.6           | 1.83   | 6.0            | 7        |
| 170 eµ 12.9 19.8 0 20.2 6.6 18.4 20                      | 170         | еµ             | 12.9     | 19.8       | 0      | 20.2          | 6.6    | 18.4           | 20       |
| <i>μμ</i> 7.8 12.4 0 12.8 3.8 11.0 13                    |             | μμ             | 7.8      | 12.4       | 0      | 12.8          | 3.8    | 11.0           | 13       |



## WW yields



Table 15: Numbers of expected events after all cuts for the signal ( $m_H = 175 - 300 \text{ GeV}$ ) and the total background in the H + 1 jet channel for an integrated luminosity of 1.7 fb<sup>-1</sup>. The observed numbers of events are also shown. The nominal numbers correspond to the background estimations described in Sections 6 and 7. Also shown are the signal and background values resulting from the fit for two different scenarios, without any signal (signal strength  $\mu = 0$ ) and with the signal present (signal strength  $\mu = 1$ ).

|             |                | Nominal |            | Fit with $\mu = 0$ |            | Fit w  |            |          |
|-------------|----------------|---------|------------|--------------------|------------|--------|------------|----------|
| $m_H$ [GeV] | Lepton Flavors | Signal  | Total Bkg. | Signal             | Total Bkg. | Signal | Total Bkg. | Observed |
|             | ee             | 3.4     | 6.3        | 0                  | 6.3        | 1.63   | 5.8        | 4        |
| 175         | еµ             | 11.7    | 18.7       | 0                  | 18.6       | 5.6    | 16.9       | 18       |
|             | μμ             | 6.9     | 12.4       | 0                  | 12.4       | 3.3    | 10.9       | 13       |
|             | ee             | 2.7     | 4.9        | 0                  | 4.8        | 1.51   | 4.4        | 3        |
| 180         | еµ             | 9.6     | 17.6       | 0                  | 17.5       | 5.2    | 16.0       | 16       |
|             | μμ             | 5.7     | 11.9       | 0                  | 12.0       | 3.0    | 10.5       | 14       |
|             | ee             | 2.1     | 4.1        | 0                  | 4.1        | 1.19   | 3.8        | 3        |
| 185         | еµ             | 7.4     | 16.5       | 0                  | 16.3       | 4.3    | 15.0       | 15       |
|             | μμ             | 4.1     | 11.1       | 0                  | 11.0       | 2.3    | 9.8        | 11       |
|             | ee             | 1.76    | 3.9        | 0                  | 4.0        | 1.24   | 3.9        | 3        |
| 190         | еµ             | 5.3     | 15.2       | 0                  | 15.5       | 3.7    | 14.2       | 16       |
|             | μμ             | 3.3     | 10.3       | 0                  | 10.5       | 2.2    | 9.7        | 11       |
|             | ee             | 1.20    | 3.4        | 0                  | 3.7        | 1.05   | 3.5        | 2        |
| 195         | еµ             | 4.1     | 14.8       | 0                  | 16.4       | 3.5    | 15.5       | 19       |
|             | μμ             | 2.8     | 8.9        | 0                  | 9.5        | 2.4    | 8.7        | 12       |
|             | ee             | 0.98    | 2.8        | 0                  | 2.9        | 0.80   | 2.7        | 1        |
| 200         | еµ             | 3.3     | 14.1       | 0                  | 15.8       | 2.7    | 15.0       | 17       |
|             | μμ             | 2.2     | 8.2        | 0                  | 8.7        | 1.68   | 8.1        | 10       |
|             | ee             | 1.53    | 13.3       | 0                  | 13.8       | 1.65   | 12.8       | 12       |
| 220         | еµ             | 8.5     | 76.6       | 0                  | 80.2       | 9.2    | 72.9       | 79       |
|             | μμ             | 2.6     | 24.4       | 0                  | 26.7       | 2.9    | 23.9       | 35       |
|             | ee             | 1.33    | 13.4       | 0                  | 14.0       | 1.37   | 13.1       | 16       |
| 240         | еµ             | 7.7     | 73.0       | 0                  | 75.4       | 7.9    | 70.0       | 72       |
|             | μμ             | 2.3     | 24.8       | 0                  | 26.6       | 2.4    | 24.4       | 33       |
|             | ee             | 1.33    | 12.3       | 0                  | 13.4       | 1.49   | 12.4       | 19       |
| 260         | еµ             | 6.3     | 66.5       | 0                  | 71.2       | 7.0    | 66.5       | 67       |
|             | μμ             | 2.3     | 23.3       | 0                  | 25.5       | 2.6    | 23.5       | 31       |
|             | ee             | 1.22    | 11.2       | 0                  | 11.5       | 1.20   | 10.7       | 20       |
| 280         | еµ             | 5.1     | 56.8       | 0                  | 55.2       | 5.0    | 52.2       | 45       |
|             | μμ             | 1.9/    | 22.2       | 0                  | 22.4       | 1.95   | 21.0       | 26       |
|             | ee             | 1.07    | 9.6        | 0                  | 9.9        | 1.09   | 9.3        | 19       |
| 300         | еµ             | 4.3     | 47.8       | 0                  | 46.6       | 4.4    | 44.0       | 38       |
|             | μμ             | 1.76    | 18.9       | 0                  | 19.1       | 1.79   | 17.9       | 21       |