素粒子実験領域、素粒子論領域、ビーム物理領域合同シンポジウム

「ヒッグスからテラスケールへ」

LHC 8TeV実験の成果

戸本 誠

名古屋大学

For the ATLAS collaboration

2013年9月21日 日本物理学会 2013年秋季大会 高知大学朝倉キャンパス

素粒子物理の状況 (LHC開始前)

1897年: electron 1900年: γ-ray 1932年: positron 1937年: µ 1956年: neutrino 1962年: ν_{e} and ν_{μ} are different 1969年: u,d,s quark 標準模型 1974年: c quark 1975年: τ 1977年: b-quark 1979年: gluon 1983年: W/Z boson 1995年: t quark 2000年: ντ

素粒子物理の状況 (LHC開始後)

LHC 2011年 : electron $: \gamma$ -ray : positron : µ : neutrino : $\nu_{\rm e}$ and ν_{μ} are different : u,d,s quark 標準模型 : c quark : τ : b-quark : gluon : W/Z boson : t quark $- \cdot \nu_{\tau}$

LHC 2012年: A Higgs boson

ヒッグスからテラスケールへ

4

ヒッグス粒子 : 人類初の種類の素粒子 (スカラーボゾン) 質量 $m_H = 125.5 \pm 0.2 \text{ (stat)} + 0.5 \atop -0.6 \text{ (sys)} \text{ GeV}$ (ATLAS) ゲージ粒子やフェルミオンの質量と関連? ヒッグス粒子の質量の安定性? Fine tuning、階層性問題

ヒッグス粒子の「性質」の精密測定→「ヒッグス物理」開始 質量、スピンーパリティ、結合、、、、、

ヒッグス粒子の問題を解決する新しい物理探索 SUSY、余剰次元、……、surprise?がテラスケールに

LHCEATLAS

LHC Run I

LHCは順調 ・Peak: 7.7 x 10^{33} cm⁻² s⁻¹ ・Delivered: 5.6 + 23.3 fb⁻¹ ATLAS検出器も順調 ・~5.2fb⁻¹ (2011, $\sqrt{s} = 7$ TeV) ・~21.3fb⁻¹ (2012, $\sqrt{s} = 8$ TeV)

Pile-up事象の増加 ・平均20 interactions/crossing

 $Z \rightarrow \mu \mu$ 事象 25 interactions

ATLAS 検出器

汎用検出器:標準模型、ヒッグス粒子、新物理に感度 →e, r, q/g-jets, μ, E^{miss} … をバランスよく測定

標準模型の物理

標準模型の物理

標準模型の物理

LHC 8TeV実験 ヒッグス物理の成果

HC HIGGS XS WG 2012

 \sqrt{s} = 8 TeV

生成過程 gluon-gluon融合 (ggF)

- ・主にtop-quarkのループ
- ・フェルミオンとの結合の間接的証拠
- Vector Boson融合 (VBF)
- ・ゲージボゾンとの結合の直接的証拠
- ・前後方に出る2本のジェット
- W/Zとの随伴生成 (VH)
- ・ゲージボゾンとの結合の直接的証拠
- ・W/Zからの高運動量レプトン

āί

Η

g

t.

Н

 10^{2}

کلک

160

180

M_H [GeV]

崩壞過程

- $H \rightarrow \gamma \gamma$: Wとtop-quarkのLoopを経て崩壊
- Wとt-quarkは負符号で干渉する
- ・フェルミオンとの結合の間接的証拠
- レプトンや光子が終状態のチャンネルが発見チャンネル
 - $H \rightarrow \gamma \gamma$, $ZZ(\rightarrow 4\ell)$, $WW(\rightarrow \ell \nu \ell \nu)$
- $H→bb, H→\tau\tau$: 膨大なQCD事象との分離が鍵

min

www

t

(C)

н

発見チャンネルの事象数

 $H \to WW$

~150 信号事象

発見チャンネルの事象数

イベントの分類

測定感度をあげ 生成過程を特定 →couplingの測定で重要

 $|H \rightarrow \gamma \gamma|$ 9 categories for ggF, 2 for VBF, 3 for VH

H→WW 2- jets があるとVBF enrichedカテゴリへ

Signal Strength

 $\mu = \frac{\sigma \times BR}{(\sigma \times BR)}_{SM}$ $\mu = 1 \text{ (if SM Higgs), } \mu = 0 \text{ (if no SM Higgs)}$ $H \rightarrow \gamma \gamma, ZZ, WW \text{ combined}$ $\mu = 1.33 \pm 0.14(\text{stat}) \pm 0.15(\text{sys})$ (mH = 125.5 GeV)

(mH=125.5GeV) $H \rightarrow bb, \tau \tau (L=13 fb^{-1})$ $\mu = 1.23 \pm 0.18$ (mH=125.5GeV)

20

arXiv:1307.1427

Evidence for production via VBF

Signal strength μE

arXiv:1307.1427

結合測定

ヒッグス粒子との結合 フェルミオン: $g_F^{\text{SM}} = \sqrt{2} \frac{m_F}{n}$ ゲージボゾン: $g_V^{\text{SM}} = 2 \frac{m_V^2}{n}$ Coupling scale factors $\kappa: g_i = g_i^{SM} \times \kappa_i$ Total width scale factor κ_{H} : $\Gamma_{H} = \Gamma_{H}^{SM} \times \kappa_{H}^{2}$ $\sigma \cdot B(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$ 例) $gg \rightarrow H \rightarrow \gamma \gamma$ process $\boldsymbol{\mu} = \frac{\boldsymbol{\sigma} \cdot \mathbf{B}(\mathbf{gg} \to \mathbf{H} \to \gamma \gamma)}{\boldsymbol{\sigma}_{\mathrm{SM}}(gg \to H) \cdot \mathbf{B}_{\mathrm{SM}}(\mathbf{H} \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$ 標準模型を仮定した К g, К r, К H $\kappa_g(\kappa_b,\kappa_t) \quad \kappa_\gamma(\kappa_W,\kappa_t) \quad \kappa_H(\kappa_b,\kappa_W,\kappa_Z,...)$

フェルミオン結合 直接測定

ATLAS-CONF-2013-079

W/Z+H (H \rightarrow bb) : 2, 1, 0(large ET^{miss})-lepton + 2 b-jets

ベストフィット: $\mu = 0.2^{+0.7}_{-0.6}$

 $H \rightarrow \tau \tau$ (2012年の13fb⁻¹までのデータ) $\mu = 0.7^{+0.7}_{-0.6}$

KgEKr

arXiv:1307.1427

25

Κγ

arXiv:1307.1427

スピンーパリティ

arXiv:1307.1432

ATLAS

\s=7 TeV ∫Ldt = 4.6 fb⁻¹

\s=8 TeV Ldt = 20.7 fb

H→ZZ*→4I

0.5

BDT output

27

Data

Background ZZ*

-0.5

スピンーパリティ

arXiv:1307.1432

ヒッグス物理まとめ

29

発見の後、「ヒッグス物理」を開始

短い時間のうちに様々な「性質」を測定 今の所、標準模型のヒッグス粒子の性質と無矛盾

より高統計な精密測定が不可欠

→ 14TeV LHCやHL-LHC、ILCに期待

LHC 8TeV実験 SUSY 探索の成果

8TeV LHCのSUSYの生成断面積

Inclusive search

ATLAS-CONF-2013-047

High pT jets (6本まで) + 0 lepton + ETmiss>160GeV

"Natural" SUSY

stop production from gluino ATLAS-CONF-2013-061など

35

GluinoはLHCで生成できる、stopには崩壊できる。

Direct chargino/neutralino production charginoとneutralinoだけが軽い場合 $m_{\tilde{\chi}_1^{\pm}} > m_{\tilde{\chi}_1^{0}}$

SUSY探索のまとめ

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

E^{miss} e, μ, τ, γ Jets $\int \mathcal{L} dt [fb^{-1}]$ Model Mass limit Reference MSUGRA/CMSSM 0 2-6 jets Yes 20.3 $m(\tilde{q})=m(\tilde{g})$ ATLAS-CONF-2013-047 1.7 TeV MSUGRA/CMSSM 3-6 jets 1 e.µ Yes 20.3 1.2 TeV any m(q) ATLAS-CONF-2013-062 MSUGRA/CMSSM 7-10 jets 0 Yes 20.3 1.1 TeV any m(q) 1308.1841 Inclusive Searches 0 2-6 jets Yes 20.3 740 GeV m(x1)=0 GeV ATLAS-CONF-2013-047 $\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{l}_1$ 0 2-6 jets Yes 20.3 m(k1)=0 GeV ATLAS-CONF-2013-047 1.3 TeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1$ 1 e.µ 3-6 jets Yes 20.3 ATLAS-CONF-2013-062 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_1$ 1.18 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{0}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow gq(\ell\ell/\ell\nu/\nu\nu)\tilde{\ell}_1$ 2 e.µ 0-3 jets 20.3 1.12 TeV $m(\tilde{k}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-089 GMSB ((NLSP) 2-4 jets tan//<15 2 e.µ Yes 4.7 1.24 TeV 1208.4688 GMSB (7 NLSP) 1-2 7 0-2 jets Yes 20.7 1.4 TeV $\tan\beta > 18$ ATLAS-CONF-2013-026 2γ Yes GGM (bino NLSP) 1.07 TeV m(x1)>50 GeV 4.8 1209.0753 GGM (wino NLSP) . Yes 4.8 619 GeV m(k1)>50 GeV ATLAS-CONF-2012-144 $1 e_{\mu} + \gamma$ GGM (higgsino-bino NLSP) Yes 4.8 m(x1)>220 GeV 1b900 GeV 1211.1167 GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(H)>200 GeV ATLAS-CONF-2012-152 690 GeV Gravitino LSP m(g)>10⁻⁴ eV ATLAS-CONF-2012-147 0 mono-jet Yes 10.5 645 GeV 0 20.1 1.2 TeV m(x3)<600 GeV ATLAS-CONF-2013-061 ğ→bb^χ 3 b Yes gen $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}$ 0 7-10 jets Yes 20.3 1.1 TeV m(x) <350 GeV 1308.1841 0-1 e, µ 3 b Yes 20.1 1.34 TeV m(R) <400 GeV ATLAS-CONF-2013-061 $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}$ m 100 m(t))<300 GeV 0-1 e.µ 3 b Yes 20.1 1.3 TeV ATLAS-CONF-2013-061 ğ→bīΫ 2 b 100-620 GeV m(R1)<90 GeV $b_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{\ell}_1$ 0 Yes 20.1 б1 1308.2631 2 e. µ (SS) 275-430 GeV 20.7 ATLAS-CONF-2013-007 $b_1b_1, b_1 \rightarrow t \tilde{\chi}_1$ 0-3 b Yes $m(\tilde{t}_{1}^{+})=2 m(\tilde{t}_{1}^{0})$ Б. squarks 1-2 e, µ 110-167 GeV 1208.4305. 1209.2102 $t_1 t_1$ (light), $t_1 \rightarrow b t_1$ 1-2 b Yes 4.7 ĩ, m(x1)=55 GeV 2 e, µ 0-2 jets Yes 20.3 130-220 GeV $m(\tilde{t}_{1}^{0}) = m(\tilde{t}_{1}) - m(W) - 50 \text{ GeV}, m(\tilde{t}_{1}) < < m(\tilde{t}_{1}^{*})$ ATLAS-CONF-2013-048 $\tilde{t}_1 \tilde{t}_1 (light), \tilde{t}_1 \rightarrow Wb\tilde{t}$ ī, 2 e.µ 2 jets $\tilde{t}_1 \tilde{t}_1 (medium), \tilde{t}_1 \rightarrow t \tilde{k}_1$ Yes 20.3 225-525 GeV m(k1)=0 GeV ATLAS-CONF-2013-065 Ŧ, 0 150-580 GeV m(\$\tilde{k}_1^0)<200 GeV, m(\$\tilde{k}_1^0)=5 GeV $\tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{t}_1$ 2 b Yes 20.1 1308.2631 gen. 1 e,µ 200-610 GeV ATLAS-CONF-2013-037 $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1$ 16 Yes 20.7 m(x1)=0 GeV Ť, 320-660 GeV $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{t}_1$ 0 2 b Yes 20.5 m(k1)=0 GeV ATLAS-CONF-2013-024 3 gil $t_1 t_1, t_1 \rightarrow c t_1$ 90-200 GeV 0 mono-jet/c tag Yes 20.3 ÷. m(t
1)-m(t
1)<85 GeV ATLAS-CONF-2013-068 t1 t1 (natural GMSB) 2 e, µ (Z) 500 GeV 1 b Yes 20.7 m(k1)>150 GeV ATLAS-CONF-2013-025 271-520 GeV $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 3 e, µ (Z) m(t1)=m(t1)+180 GeV ATLAS-CONF-2013-025 1 b Yes 20.7 ī, $\tilde{l}_{L,R}\tilde{l}_{L,R}, \tilde{l} \rightarrow l\tilde{\chi}_{1}^{0}$ 2 e.µ Ö Yes 20.3 85-315 GeV m(x1)=0 GeV ATLAS-CONF-2013-049 $\chi_1 \chi_1, \chi_1 \rightarrow \ell \nu(\ell \bar{\nu})$ $m(\tilde{\ell}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\tau})=0.5(m(\tilde{\ell}_1^0)+m(\tilde{\ell}_1^0))$ 2 e.µ 0 Yes 20.3 125-450 GeV ATLAS-CONF-2013-049 Ň $\tilde{\chi}_1, \tilde{\chi}_1 \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ 2т Yes 20.7 180-330 GeV $m(\tilde{\ell}_{1}^{0})=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\ell}_{1}^{+})+m(\tilde{\ell}_{1}^{0}))$ ATLAS-CONF-2013-028 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} v \tilde{\ell}_{L} \ell(\tilde{\nu} \gamma), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \gamma)$ 3 e.µ 0 Yes 20.7 600 GeV $m(\tilde{t}_{1}^{*})=m(\tilde{t}_{2}^{0}), m(\tilde{t}_{1}^{0})=0, m(\tilde{t}, \tilde{v})=0.5(m(\tilde{t}_{1}^{*})+m(\tilde{t}_{1}^{0}))$ ATLAS-CONF-2013-035 $\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$ 3 e.µ 0 Yes 20.7 315 GeV $m(\tilde{k}_1^n)=m(\tilde{k}_2^n), m(\tilde{k}_1^n)=0$, sleptons decoupled ATLAS-CONF-2013-035 1 e.µ 2bYes 20.3 $m(\tilde{k}_{1}^{n})=m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0})=0$, sleptons decoupled ATLAS-CONF-2013-093 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}$ 285 GeV lived Disapp. trk 270 GeV $m(\tilde{\ell}_1^{\pm})-m(\tilde{\ell}_1^{0})=160 \text{ MeV}, \tau(\tilde{\ell}_1^{\pm})=0.2 \text{ ns}$ Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ 1 jet Yes 20.3 ATLAS-CONF-2013-069 Stable, stopped g R-hadron $m(\tilde{\ell}_1^0)=100 \text{ GeV}, 10 \,\mu \text{s} < r(\tilde{g}) < 1000 \text{ s}$ 0 1-5 jets Yes 22.9 832 GeV ATLAS-CONF-2013-057 10<tan/3<50 -oud-475 GeV GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu) = 1 \cdot 2 \mu$ 15.9 ATLAS-CONF-2013-058 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 4.7 230 GeV 0.4<r(t
1)<2 ns 1304.6310 $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV) 1 µ, displ. vtx . 20.3 1.0 TeV 1.5 <cr<156 mm, BR(µ)=1, m(ℓ1)=108 GeV ATLAS-CONF-2013-092 *X*₃₁₁=0.10, *X*₁₃₂=0.05 LFV $pp \rightarrow \tilde{v}_r + X, \tilde{v}_r \rightarrow e + \mu$ 2 e.µ 4.6 1.61 TeV 1212.1272 J's11=0.10, J1(2)33=0.05 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ $1 e. \mu + \tau$ 4.6 1.1 TeV 1212.1272 Bilinear RPV CMSSM 1 e,µ 7 jets Yes 4.7 1.2 TeV $m(\tilde{q})=m(\tilde{g}), c_{TLSP}<1 mm$ ATLAS-CONF-2012-140 4 e,µ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v}_{e}$ Yes 20.7 ATLAS-CONF-2013-036 760 GeV m(k1)>300 GeV, A121>0 $3e, \mu + \tau$ Yes 20.7 350 GeV $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau}$ ATLAS-CONE-2013-036 m(x1)>80 GeV, A133>0 6-7 jets BR(t)=BR(b)=BR(c)=0% 0 20.3 916 GeV ATLAS-CONF-2013-091 $\tilde{g} \rightarrow q q q$ 2 e, µ (SS) 20.7 880 GeV ATLAS-CONF-2013-007 $\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0-3 b Yes Scalar gluon pair, sgluon→qq 0 4 jets 4.6 soluor 100-287 GeV incl. limit from 1110.2693 1210.4826 Other Scalar gluon pair, sgluon→tž 2 e, µ (SS) 1 b Yes 14.3 800 GeV ATLAS-CONF-2013-051 WIMP interaction (D5, Dirac x) 0 mono-jet Yes 10.5 m(¿)<80 GeV, limit of <687 GeV for D8 ATLAS-CONF-2012-147 $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} full data partial data

Mass scale [TeV]

38

ATLAS Preliminary

 $\sqrt{s} = 7, 8 \text{ TeV}$

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

full data

SUSY探索のまとめ

38

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

SUSY以外の新物理探索

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

39

Vew uarks	4th generation : b'b' → SS dilepton + jets + E Vector-like guark : TT→ Ht+X	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051] L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	720 GeV b'r 790 GeV T	ass nass (isospin doublet)	
ks Ks	Scalar LQ pair (p=1) : Kin. vars. in $\tau\tau_{ij}$, τ_{vjj} 4 th generation : t't' \rightarrow WbWb 4th generation : b'b' \rightarrow SS dilecton + iets + F	L=4.7 fb ⁻¹ , 7 TeV [1303.0526] L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	534 GeV 3" gen. 656 GeV 1' ma	.Q mass s	
ГO	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj Scalar LQ pair (β =1) : kin. vars. in grij, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828] L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	660 GeV 1" ge 685 GeV 2 nd g	n. LQ mass en. LQ mass	
	W' (\rightarrow tq, g _g =1): m_{tq} W' _R (\rightarrow tb, LRSM): m_{tp}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593] L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	430 GeV W mass	1.84 TeV W' mass	
~	Z' (SSM) : $m_{\tau\tau}$ Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m_{\tau\tau}$ W' (SSM) : $m_{\tau,e/a}$	L=4.7 fb ⁻¹ , 7 TeV [1210.6604] L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052] L=4.7 fb ⁻¹ , 7 TeV [1209.4445]	1.	Tev Z' mass 1.8 Tev Z' mass 2.55 TeV W' mass	
ũ	qqqq contact interaction : χ(m) qqll CI : ee & μμ, m uutt CI : SS dilepton + jets + E _{T,miss} Z' (SSM) : m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718] L=5.0 fb ⁻¹ , 7 TeV [1211.1150] L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051] L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]		7.6 TeV Λ 13.9 1 3.3 TeV Λ (C=1) 2.86 TeV Z' mass	TeV A (constructive int.)
Extra o	Bulk RS : ZZ resonance, m_{ijj} RS $g_{KK} \rightarrow t\bar{t}$ (BR=0.925) : $t\bar{t} \rightarrow I+jets$, m_{ijj} ADD BH ($M_{TH} / M_D = 3$) : SS dimuon, $N_{ch, part.}$ ADD BH ($M_{TH} / M_D = 3$) : leptons + jets, Σp_{T} Quantum black hole : dijet, $F_{y}(m_{ij})$	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150] L=4.7 fb ⁻¹ , 7 TeV [1305.2755] L=1.3 fb ⁻¹ , 7 TeV [1111.0080] L=1.0 fb ⁻¹ , 7 TeV [1204.4645] L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	850 GeV (1.25	raviton mass $(k/M_{Pl} = 1.0)$ 2.07 TeV g _{KK} mass $M_D (\delta=6)$ 5 TeV $M_D (\delta=6)$ 4.11 TeV $M_D (\delta=6)$	∫ <i>Ldt</i> = (1 - 20) fb ⁻¹ √s = 7, 8 TeV
limensio	UED : diphoton + E _{T,miss} S ¹ /Z ₂ ED : dilepton, m _{il} RS1 : dilepton, m _{il} RS1 : WW resonance. m ₂	L=4.8 fb ⁻¹ , 7 TeV [1209.0753] L=5.0 fb ⁻¹ , 7 TeV [1209.2535] L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017] L=4.7 fb ⁻⁴ , 7 TeV [1208.2880]	1.4	Tev Compact. scale R ⁻¹ 4.71 TeV M _{KK} ~ R ⁻¹ 2.47 Tev Graviton mass (k/M _P V Graviton mass (k/M _P = 0.1)	Preliminary
JS	Large ED (ADD) : monojet + $E_{T,miss}$ Large ED (ADD) : monophoton + $E_{T,miss}$ Large ED (ADD) : diphoton & dilepton, m_{vr} (III	L=4.7 fb ⁻¹ , 7 TeV [1210.4491] L=4.6 fb ⁻¹ , 7 TeV [1209.4625] L=4.7 fb ⁻¹ , 7 TeV [1211.1150]		4.37 TeV M _D (δ=2) 1.93 TeV M _D (δ=2) 4.18 TeV M _S (HLZ δ=3	ATLAS

*Only a selection of the available mass limits on new states or phenomena shown

SUSY以外の新物理探索

*Only a selection of the available mass limits on new states or phenomena shown

まとめ

40

ヒッグス粒子の発見から1年+2.5ヶ月

- "ヒッグス物理"が開始
 今の所、標準模型ヒッグスと無矛盾
 LHC Run X による精密測定 → ILC で面白くなる
- <mark>ヒッグスの存在によって新物理発見にますます期待</mark> 今の所、まだ兆候はない テラスケールの領域を広くExcludeし始めている → 発見目前のレベルにまで追いつめたか??

14 TeV LHC \rightarrow HL-LHC で新物理を捕らえ、ILCへ

まとめ

41

ヒッグス粒子の発見から1年+2.5ヶ月

"ヒッグス物理"が開始 5ヒッグスからテラスケール に向けた測定・探索が始まった ヒッグスの存在によって新物理発見にますます期待 14 TeV LHC, HL-LHC, ILC^ → すぐ目の前まで追いつめたか??

14 TeV LHC → HL-LHC で新物理を捕らえ、ILCへ

backup

Electron energy scale

Date (Day/Month)

Trigger

April

June

Higgs production & decay

崩壞過程

46

min

mm

(C)

Н

- $H \rightarrow \gamma \gamma$: Wとt-quarkのLoopを経て崩壊
- Wとt-quarkは負符号で干渉する
- ・フェルミオンとの結合の間接的証拠
- レプトンや光子が終状態のチャンネルが発見チャンネル
 - $H \rightarrow \gamma \gamma$, $ZZ(\rightarrow 4\ell)$, $WW(\rightarrow \ell \nu \ell \nu)$
- $H→bb, H→\tau\tau$: 膨大なQCD事象との分離が鍵

Combined $m_H = 125.5 \pm 0.2 \text{ (stat)} \stackrel{+0.5}{_{-0.6}} \text{ (stat)}$ GeV $\Delta m_H = m_H^{\gamma\gamma} - m_H^{ZZ} = 2.3 \stackrel{+0.3}{_{-0.7}} \text{ (stat)} \pm 0.6 \text{ (stat)}$ GeV この質量差を生み出す確率 1.5% (2.4 σ) ~ 8%

質量

-+ σ(stat) — σ(stat) ATLAS ATLAS Total uncertainty Total uncertainty σ(sys) -σ**(sys)** m_H = 125.5 GeV ±1σonμ m_H = 125.5 GeV \pm 1 σ on μ σ(theo) σ(theo) arXiv:1307.1427 0.23 ±0.23 $H \rightarrow \gamma \gamma$ $H \rightarrow \gamma \gamma$ 0.22 0.17 $\mu = 1.55_{-0.28}^{+0.33} \begin{array}{l} \pm 0.15 \\ \pm 0.15 \end{array}$ $\mu = 1.55^{+0.33}_{-0.28} \begin{bmatrix} -0.13 \\ +0.17 \\ -0.12 \end{bmatrix}$ Low p_{Tt} $\mu = 1.6^{+0.5}_{-0.4} \pm 0.3$ 0.35 arXiv:1307.1427 $H \rightarrow ZZ^* \rightarrow 4I$ 0.32 High p_{Tt} $\mu = 1.7^{+0.7}_{-0.6} \pm 0.5$ 0.20 $\mu = 1.43^{+0.40}_{-0.35} | ^{-0.13}_{-0.10}$ 2 jet high 2 jet high mass (VBF) $\mu = 1.9^{+0.8}_{-0.6} \pm 0.6$ 0.10 0.20 arXiv:1307.1427 VH categories $\mu = 1.3^{+1.2}_{-1.1} \pm 0.9$ $H \rightarrow WW^* \rightarrow I_V I_V$ 0.21 0.23 $\mu = 0.99_{-0.28}^{+0.31}$ 0.19 ±0.33 $\text{H} \rightarrow \text{ZZ}^{\star} \rightarrow \text{4I}$ 0.15 $\mu = 1.43_{-0.35}^{+0.40} \begin{array}{c} \pm 0.17 \\ \pm 0.14 \end{array}$ 0.09 Combined + 0.13 arXiv:1307.1427 0.14 VBF+VH-like $H \rightarrow \gamma \gamma$, ZZ^* , WW^* $\mu = 1.2^{+1.6}_{-0.9} + 1.6_{-0.9}$ + 0.17 categories $\mu = 1.33^{+0.21}_{-0.18} \begin{vmatrix} -0.13 \\ +0.12 \\ -0.10 \end{vmatrix}$ Other Other $\mu = 1.45^{+0.43}_{-0.36} \pm 0.35$ ±0.21 $H \rightarrow WW^* \rightarrow I_V I_V$ ATLAS-CONF-2013-079 W,Z H $\rightarrow b\overline{b}$ ±0.5 $\mu = 0.99^{+0.31}_{-0.28} \begin{array}{c} \pm 0.21 \\ \pm 0.12 \end{array}$ Preliminary $\mu = 0.2^{+0.7}_{-0.6} \begin{vmatrix} \pm 0.4 \\ \pm 0.4 \end{vmatrix}$ 0+1 jet $\mu = 0.82^{+0.33}_{-0.32} \pm 0.22$ ATLAS-CONF-2012-160 (8TeV: 13 fb⁻¹) $H \rightarrow \tau \tau$ 2 jet VBF $\mu = 1.4^{+0.7}_{-0.6} \pm 0.5$ Preliminary Comb. H $\rightarrow \gamma\gamma$, ZZ*, WW* ± 0.14 $\mu = 0.7^{+0.7}_{-0.6}$ $\mu = 1.33^{+0.21}_{-0.18} \pm 0.15 \pm 0.11$ $vs = 7 \text{ TeV} \int Ldt = 4.6-4.8 \text{ fb}^{-1} -0.5$ 0 0.5 1.5 2 3 0 √s = 7 TeV ∫Ldt = 4.6-4.8 fb⁻¹ Signal strength (μ) \s = 8 TeV ∫Ldt = 13-20.7 fb⁻¹ Signal strength (μ) √s = 8 TeV ∫Ldt = 20.7 fb⁻¹

VBF過程とfermion couplingの証拠

スピンーパリティ 測定

JP=0+ v.s. 0arXiv:1307.1432

53

Z'

Only $H \rightarrow ZZ^* \rightarrow 4$ lepton is used for this study m₁₂, m₃₄, and 5 angles are the input of the BDT

JP=0+ v.s. 1+ /1-

arXiv:1307.1432

54

 $H \rightarrow ZZ^* \rightarrow 4$ lepton and $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ are sensitive for this study

• H $\rightarrow \gamma \gamma$ decay is forbidden (Landau-Yang theorem)

• For same reason, J=1 boson is produced only from quark-quark bar annihilation

 $H \rightarrow ZZ^* \rightarrow 4$ lepton : uses BDT from the inputs of m₁₂, m₃₄, and 5 angles

 $H \rightarrow WW \rightarrow e \nu \mu \nu$: uses 2 stage of BDT from inputs of m_T, $\Delta \phi_{\ell \ell}$, m_{\ell \ell}, and p_T^{ℓ ℓ}

- 1st classifier : Distinguish the signal from sum of the all backgrounds
- 2nd classifier : Distinguish the $J^P=0^+$ from $J^P=1^+$, 1-

Combined ZZ/WW data agree with 0+ hypothesis, $J^{P}=1+(=1^{-})$ hypothesis is excluded at 99.97% (99.7%) C.L.

JP=0+ v.s. 2+

arXiv:1307.1432

55

 $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4$ lepton and $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ are sensitive for this study $H \rightarrow ZZ^* \rightarrow 4$ lepton : uses BDT from the inputs of m₁₂, m₃₄, and 5 angles $H \rightarrow WW \rightarrow e \nu \mu \nu$: uses 2 stage of BDT from inputs of m_T, $\Delta \phi_{\ell \ell}$, m_{\ell \ell}, and p_T^{\ell \ell} $H \rightarrow \gamma \gamma$: uses m_{r r} and decay angle $|\cos \theta^*|$ in di-photon rest frame,

$$|\cos\theta^*| = \frac{|\sinh\left(\Delta\eta^{\gamma\gamma}\right)|}{\sqrt{1 + (p_T^{\gamma\gamma}/m_{\gamma\gamma}^2)}} \frac{2p_T^{\gamma_1} p_T^{\gamma}}{m_{\gamma\gamma}^2}$$

 $|\cos \theta^*|$ distributions for the backgrounds is extracted from sideband of m_{rr}

Spin-Parity summary

arXiv:1307.1432

 $J^P=0^-$ is excluded at 97.8% CL by $ZZ \rightarrow 4$ lepton channel

J^P=1⁻ is excluded at 99.97% CL by ZZ \rightarrow 4 lepton and WW \rightarrow e $\nu \mu \nu$ channels

JP=1+ is excluded at 99.7% CL by ZZ \rightarrow 4 lepton and WW \rightarrow e $\nu \mu \nu$ channels

- JP=2+ is excluded at 99.9% CL by ZZ \rightarrow 4 lepton, WW \rightarrow e $\nu \mu \nu$, and $\gamma \gamma$ channels
 - It can be produced via gluon-gluon or quark-quark bar annihilation
 - 2+ is tested as a function of f_{qq} = fraction of qq/gg produced signals
 - fqq=4% at LO for 2+m minimal model

Differential cross-section in $H \rightarrow \gamma \gamma$

Fiducial differential cross-section as a function of

- 8 observables : p_{Trr} , $|y_{rr}|$, $|\cos \theta^*|$, N_{jets} , Φ_{jj} , ...,
- The distributions are unfolded to particle level
- Sensitive to PDF, radiative correction, relative rate of Higgs production, spin,...

Probability of χ^2 test

	Njets	$p_{\mathrm{T}}^{\gamma\gamma}$	$ y^{\gamma\gamma} $	$ \cos\theta^* $	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi_{jj}$	$p_{\mathrm{T}}^{\gamma\gamma jj}$
POWHEG	0.54	0.55	0.38	0.69	0.79	0.42	0.50
MINLO	0.44	_	_	0.67	0.73	0.45	0.49
HRes 1.0	_	0.39	0.44	_	_	_	_

No significant deviation from SM (POWHEG, MINLO, HRES1.0) is observed.

57

ATLAS-CONF-2013-072

稀 生成 · 崩壊

Direct stop pair production カラーをもつSUSYの中でstopだけが軽い

Inclusive search

direct stop pair production

direct stop pair production

Natural SUSY

