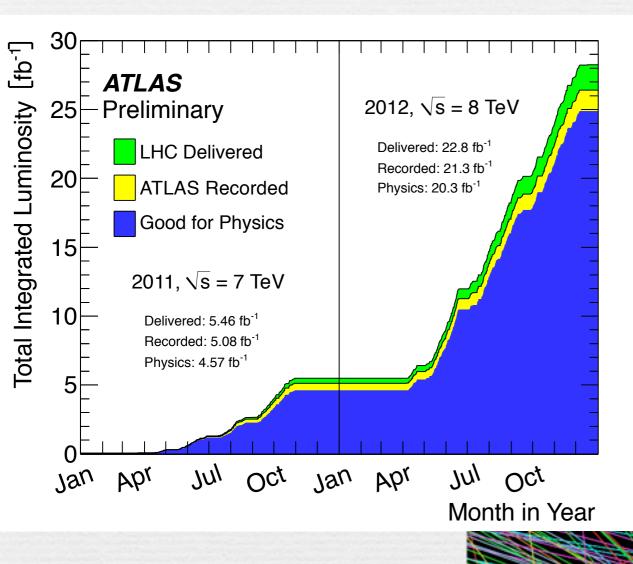


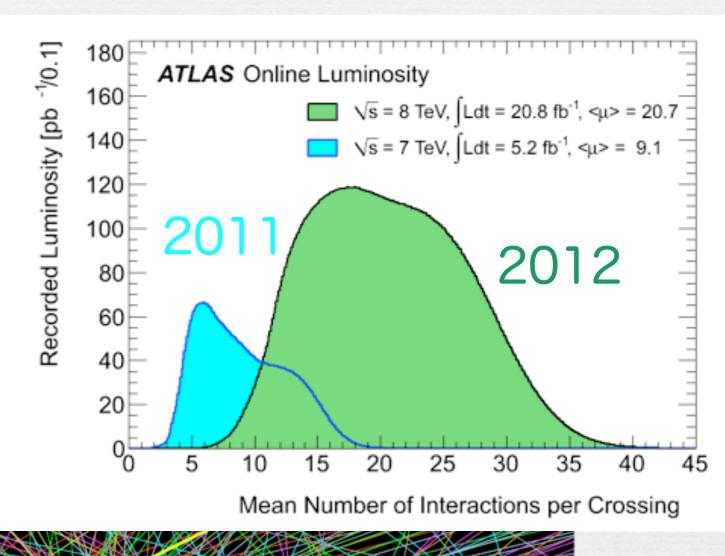
Results of LHC-ATLAS 8TeV Run

Makoto Tomoto

Tau-Lepton Physics Research Center Graduate School of Science Nagoya University

Nagaya University
Tau Lepton Physics Research Center

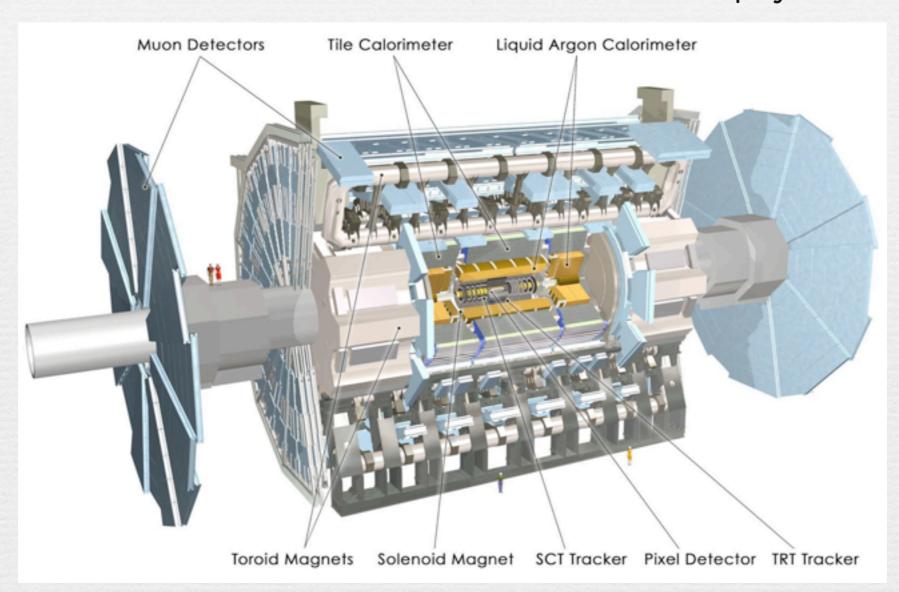

Contents



LHC Run I performed very well

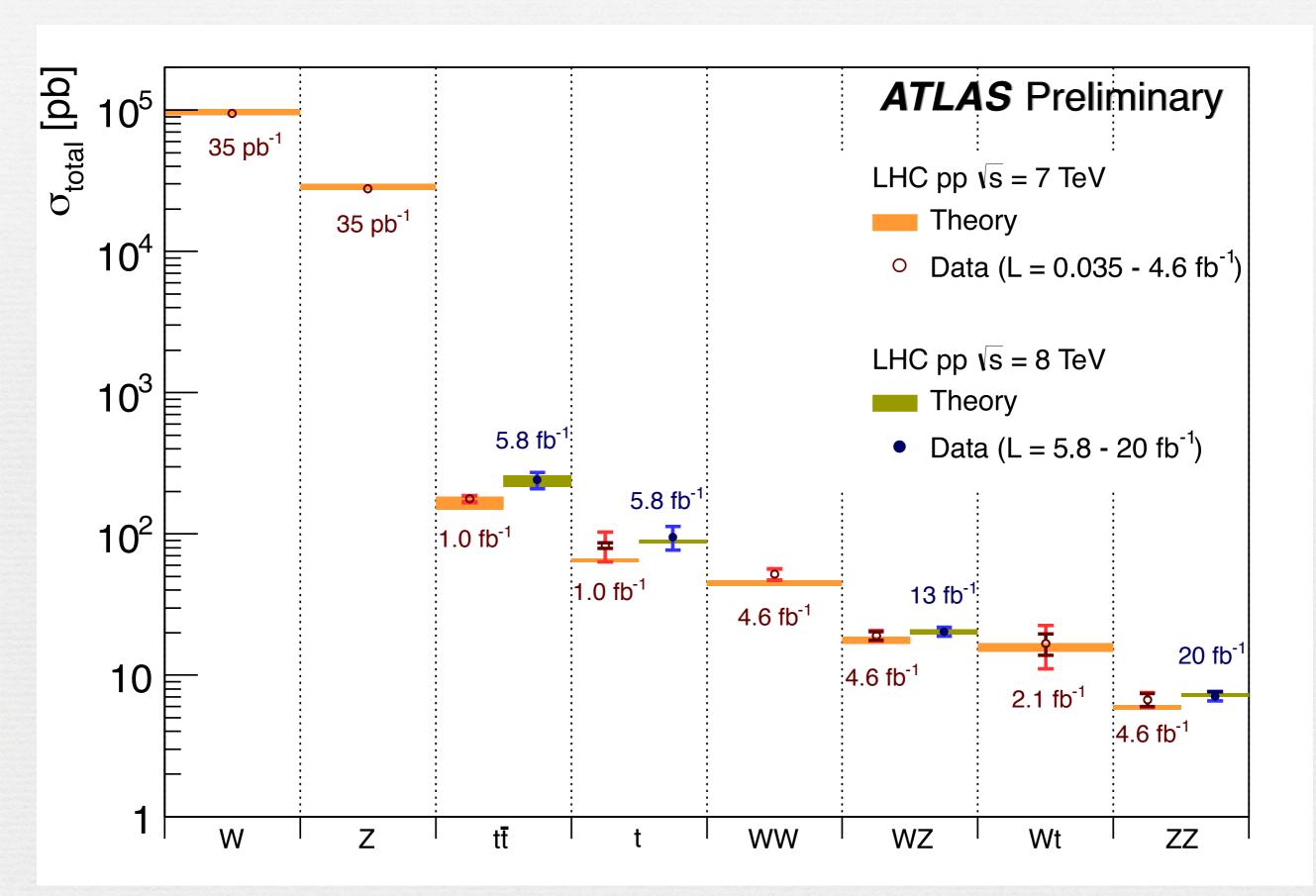
2011 : $\sqrt{s}=7\text{TeV}$, $\int Ldt = 5\text{fb}^{-1}$, $\langle \mu \rangle = 9$

2012 : $\sqrt{s}=8\text{TeV}$, $\int Ldt = 21\text{fb}^{-1}$, $\langle \mu \rangle = 21$

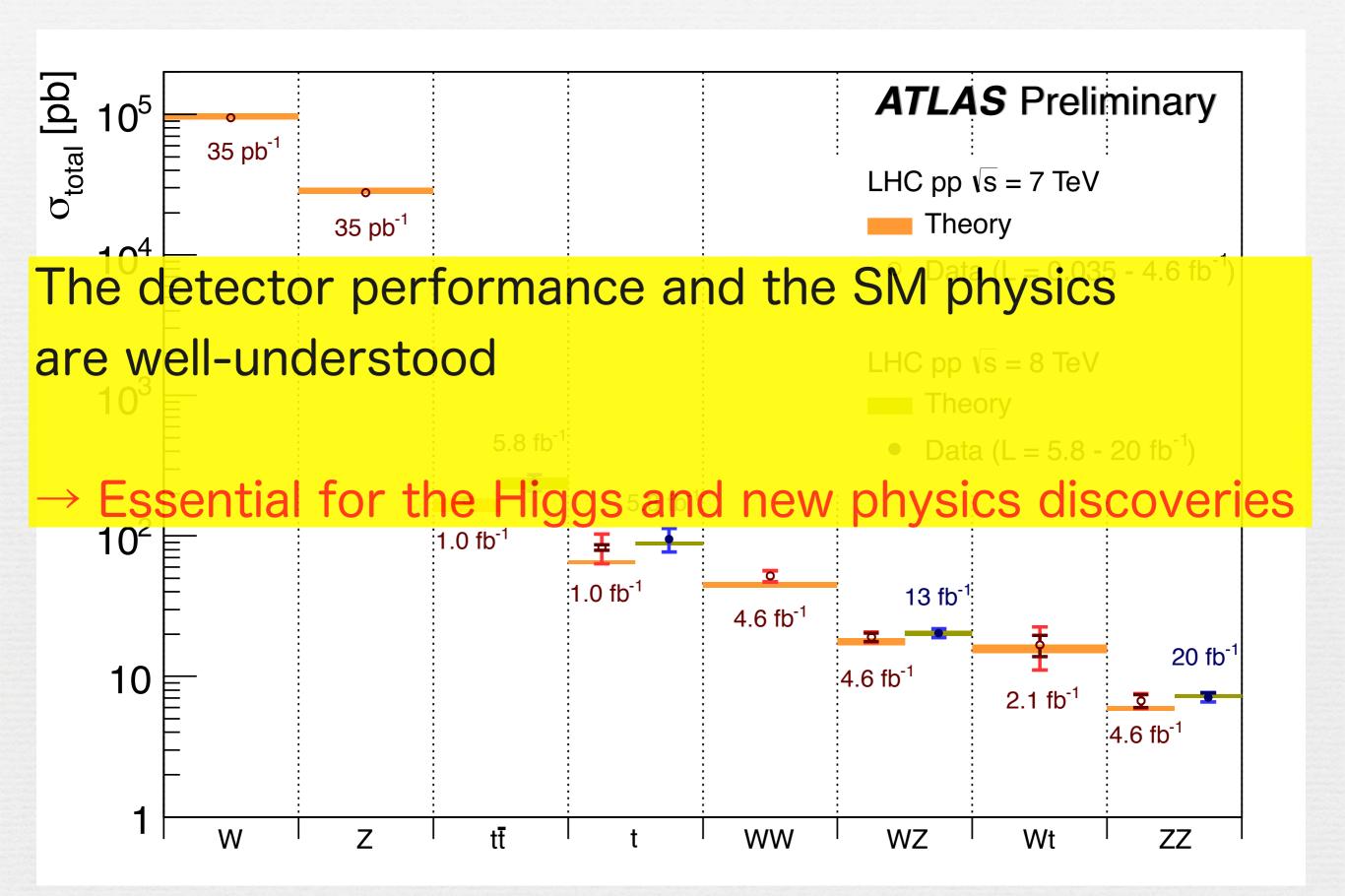


~20 pile-ups!!

ATLAS detector

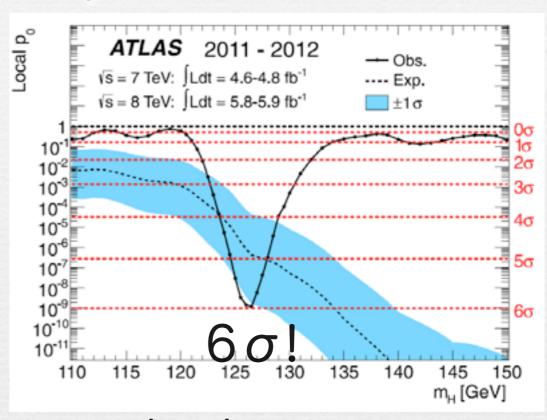

The ATLAS detector was designed with discovery of the Higgs boson new physics

in mind



- Precise measurement of the charged tracks by inner detectors
- Identification of electrons and photons against QCD jets
- Excellent calorimeter hermeticity and energy resolution
- Precise muon reconstruction and triggering by muon detectors

Physics towards Higgs discovery



Physics towards Higgs discovery

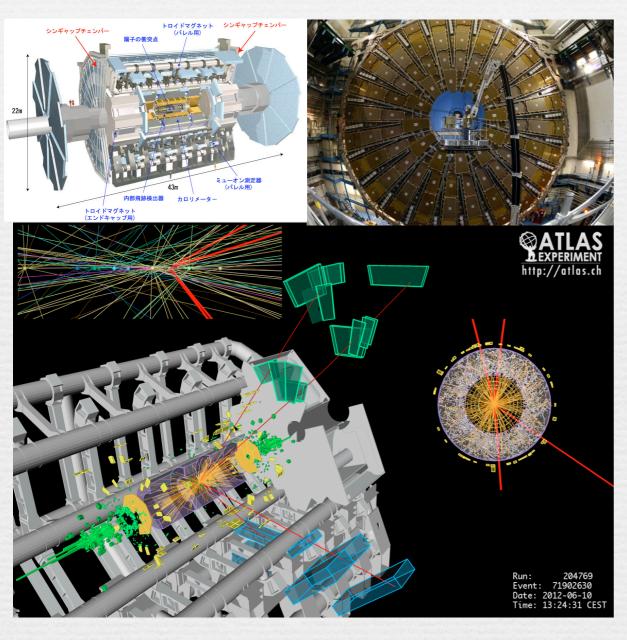
Higgs discovery

July 2012, We observed a Higgs-like resonance at m_H=125.5GeV

Since then, we focus our interests on whether:
this resonance is really the Higgs predicted by SM?
there are any signs of physics beyond the SM?

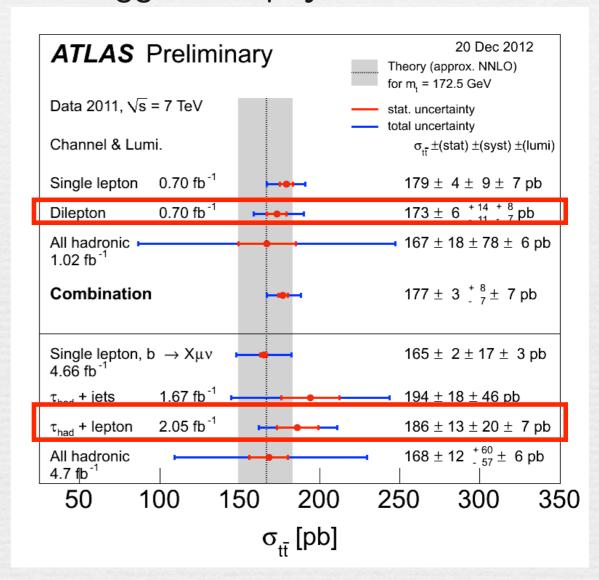
They are addressed by

Precise measurements on Higgs property


signal strength, couplings and spin-parity

Direct searches for the physics beyond the SM

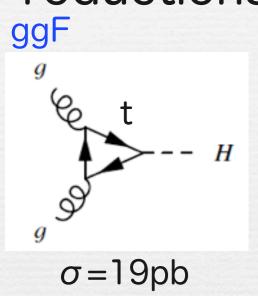
Nagoya contributions

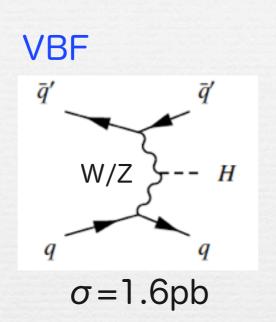

1.L1 muon trigger system

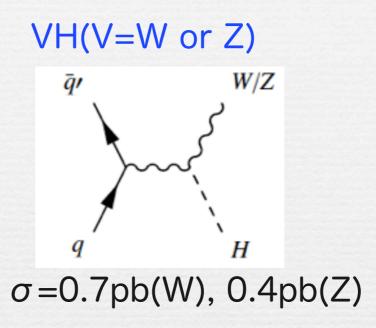
Installation/commissioning/operation

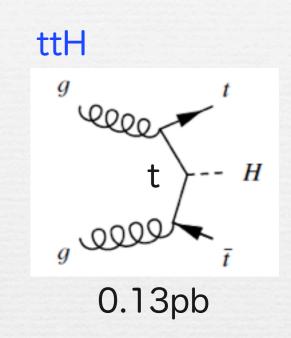
2. Physic analysis

Top quark physics Higgs, new physics searches

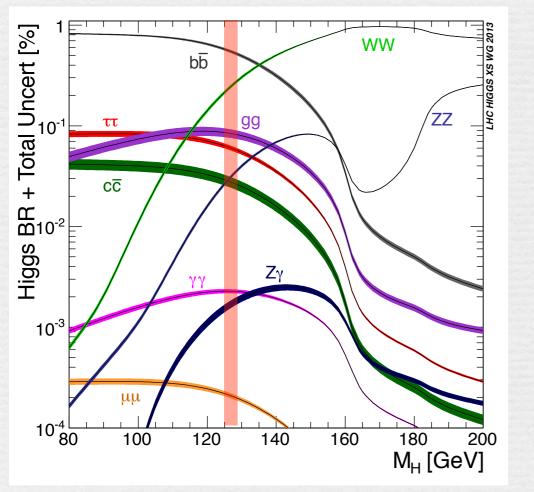


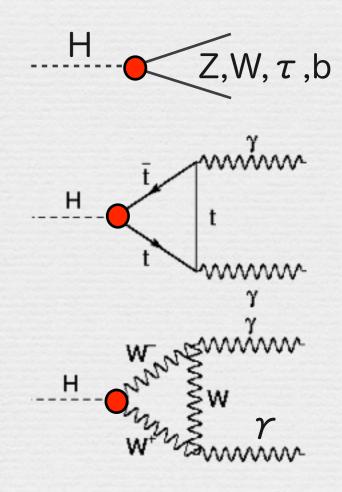

Trying to extend the research area to the Higgs and new physics through top quark productions and decays.

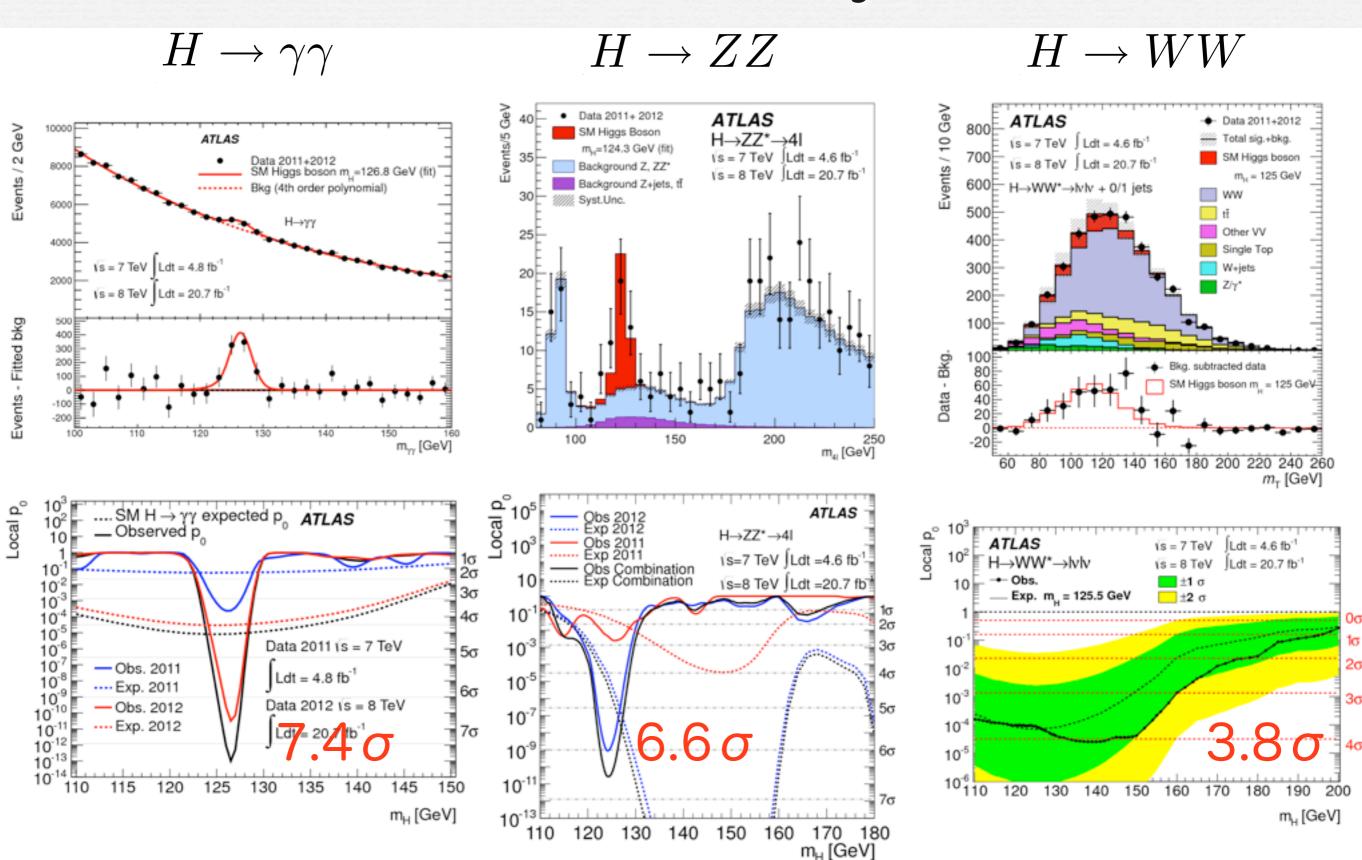

Higgs Physics


Higgs productions and decays

Productions






Decays Mass of m_H~125.5GeV gives us maximally rich decay modes !!

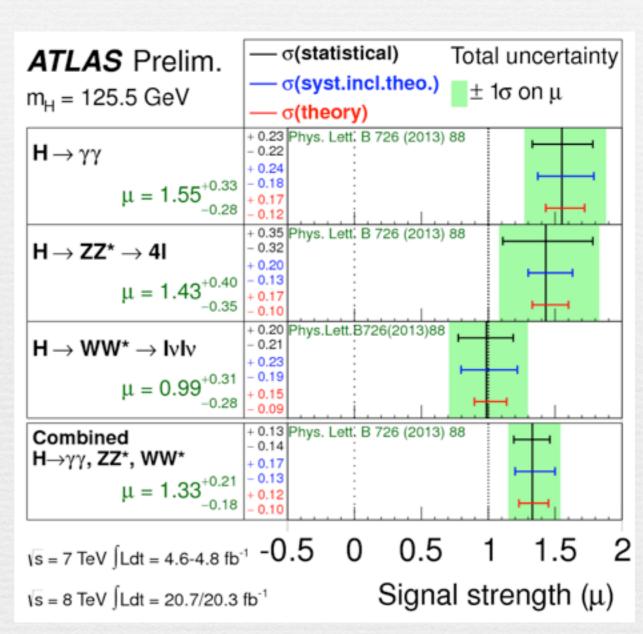
mн=125.5GeV	BR(%)
$H \rightarrow \gamma \gamma$	0.23
H→ZZ	2.8
H→WW	22
H→τ τ	6.2
H→bb	57

Yields in the discovery channels

~450 signal events expected ~15 signal events expected ~180 signal events expected

Signal strength

arXiv:1307.1427

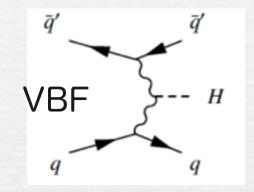

$$\mu = \frac{\sigma \times BR}{(\sigma \times BR)}_{SM}$$

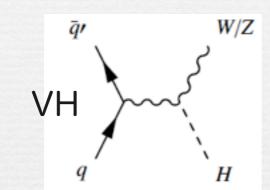
 μ =1 (if SM Higgs), μ =0 (if no SM Higgs)

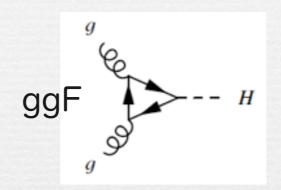
combined ($H\rightarrow \gamma \gamma$, ZZ, WW)

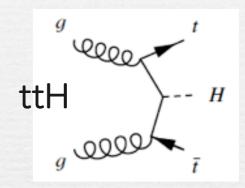
$$\mu = 1.33 \pm 0.14 (\mathrm{stat}) \pm 0.15 (\mathrm{sys})$$
 (mH=125.5GeV)

Result is consistent with the SM prediction with 15% precision.

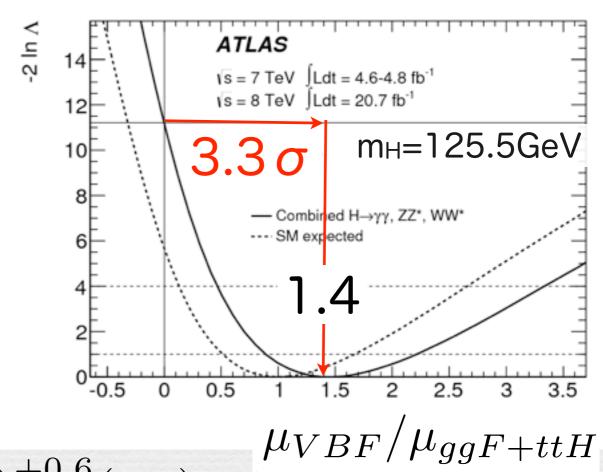

Statistical, systematic and theory (QCD scale, PDF) uncertainties are already comparable.


Evidence for production via VBF


arXiv:1307.1427


Signal strength is categorized by

vector-boson-mediated processes and gluon-mediated processes



 $\mu_{VBF}/\mu_{ggF+ttH} = 1.4^{+0.4}_{-0.3}(\text{stat})^{+0.6}_{-0.4}(\text{sys})$

 $3.3\,\sigma$ evidence that a fraction of Higgs boson production occurs through VBF

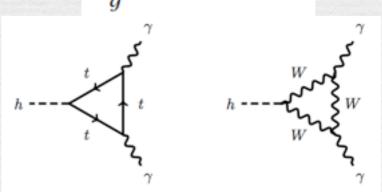
Coupling measurements

In the standard model,

coupling to fermion
$$g_F^{\rm SM}=\sqrt{2}\frac{m_F}{v}$$
 coupling to gauge boson $g_V^{\rm SM}=2\frac{m_V^2}{v}$

SM couplings are tested introducing coupling scale factors κ : $g_i = g_i^{\mathrm{SM}} imes \kappa_i$

The total Higgs boson width is also tested introducing $\, \kappa \, {
m H}^2 \colon \; \Gamma_H = \Gamma_H^{
m SM} imes \kappa_H^2 \,$

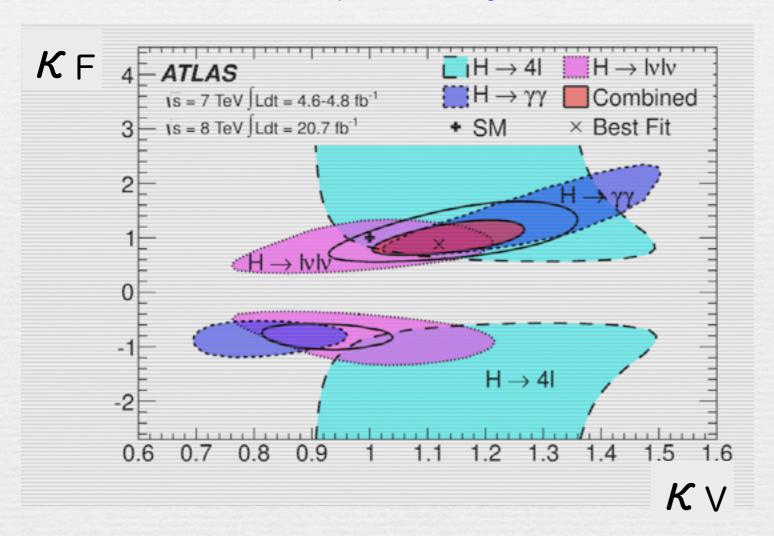

$$\sigma \cdot B(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H} \quad \to \text{signal strength can be written by } \kappa \, \text{s}$$

For example, $gg \rightarrow H \rightarrow \gamma \gamma$ process can be written as

$$\frac{\sigma \cdot B(gg \to H \to \gamma \gamma)}{\sigma_{SM}(gg \to H) \cdot B_{SM}(H \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

 κ_{H} and effective scale factors κ_{r} , κ_{g} (loop induced processes)

- Expressed as a function of the SM coupling scale factors $\kappa_{\gamma}(\kappa_W,\kappa_t)$ $\kappa_g(\kappa_b,\kappa_t)$ $\kappa_H(\kappa_b,\kappa_W,\kappa_Z,...)$
- Treated as free parameters to test BSM contributions

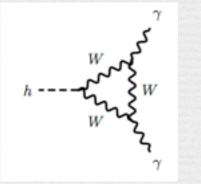


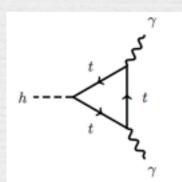
Couplings to fermions and bosons

arXiv:1307.1427

In this analysis, we assume

- One coupling scale factor for fermions $\kappa_F = \kappa_t = \kappa_b = \kappa_ au =$
- \cdot One coupling scale factor for bosons $\kappa_V = \kappa_W = \kappa_Z$
- κ_g , κ_r , and κ_H depends only on κ_F and κ_V \rightarrow No contributions from BSM

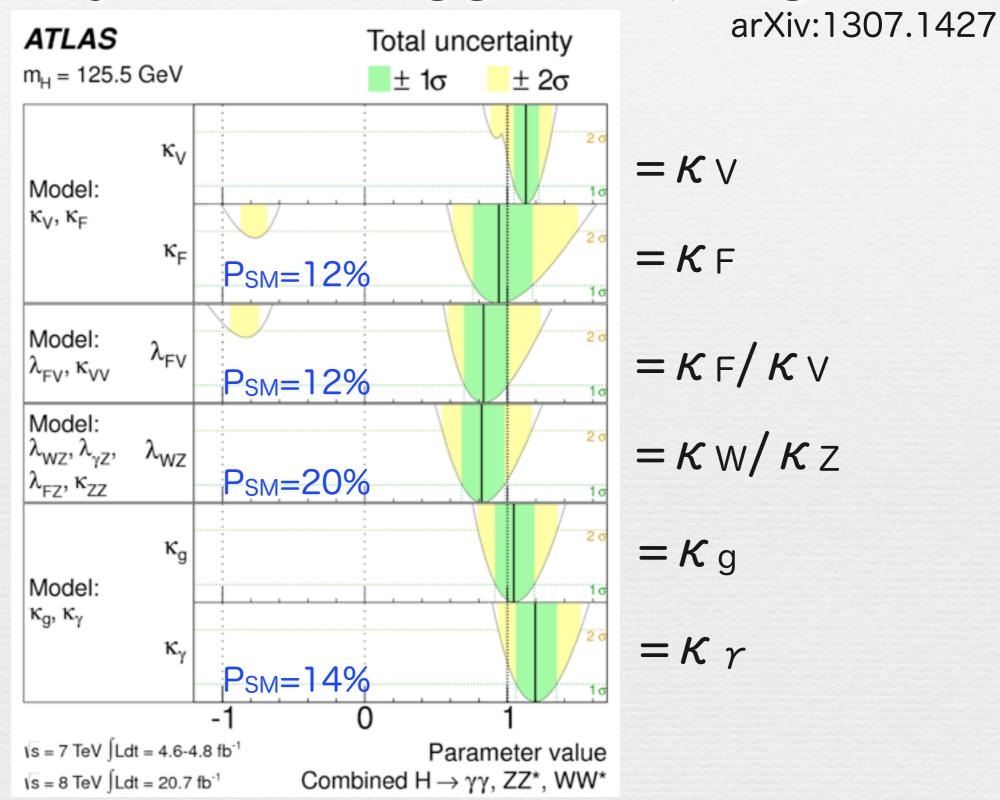

$$\kappa_F \in [0.76, 1.18]$$


$$\kappa_V \in [1.05, 1.22]$$

at 68% C.L.

compatibility of the SM is 12%

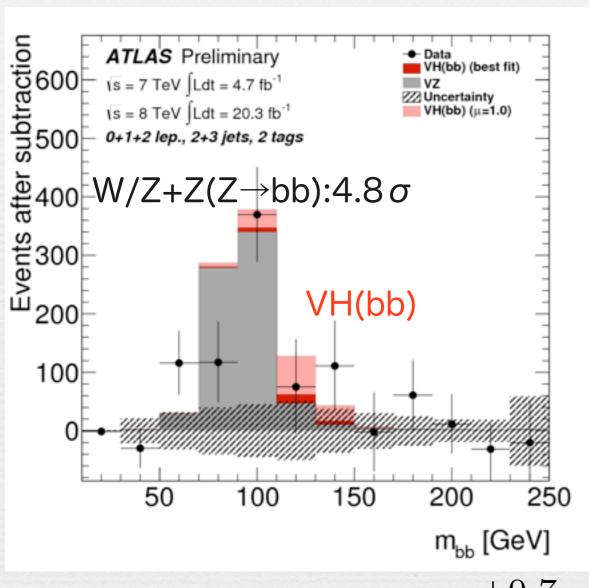
$$\kappa_{\gamma}^2 \simeq |1.26\kappa_V - 0.26\kappa_F|^2$$



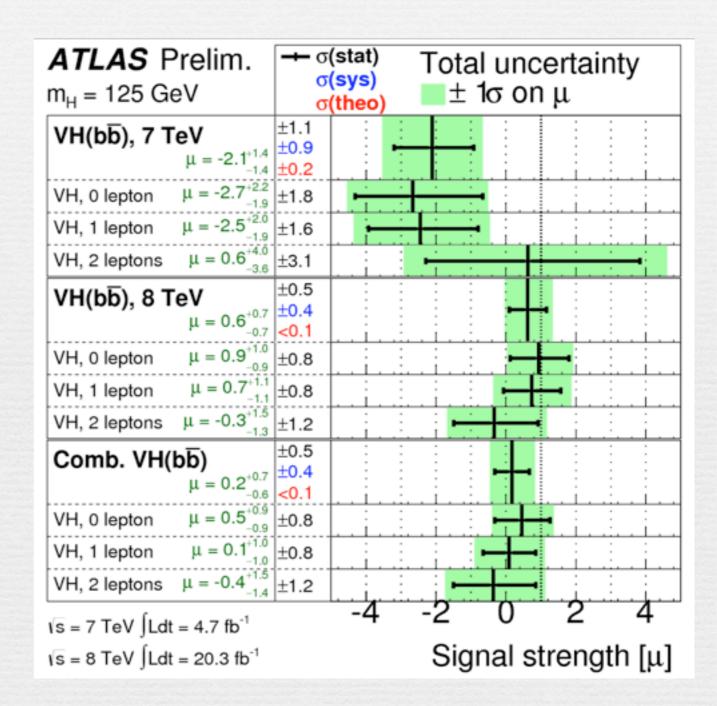
 $H \rightarrow \gamma \gamma$ prefers the minimum with positive relative sign

• Thanks to the negative interference between W-boson loop and t-quark loop $\kappa_F=0$ is excluded at >5 σ \rightarrow Indirect evidence of the Higgs-fermion coupling!!

Summary of the Higgs couplings



Measurements are compatible with SM Higgs expectations (=1)


H→bb direct measurement

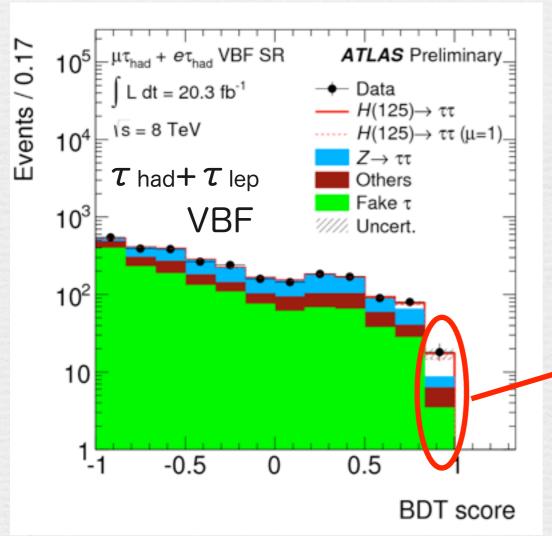
ATLAS-CONF-2013-079

W/Z+H (H \rightarrow bb) : 2, 1, 0(large E_T^{miss})-lepton + 2 b-jets

Best fit $\mu = 0.2^{+0.7}_{-0.6}$

We need more data to obtain evidence of H→bb

$H \rightarrow \tau \tau$ direct measurement

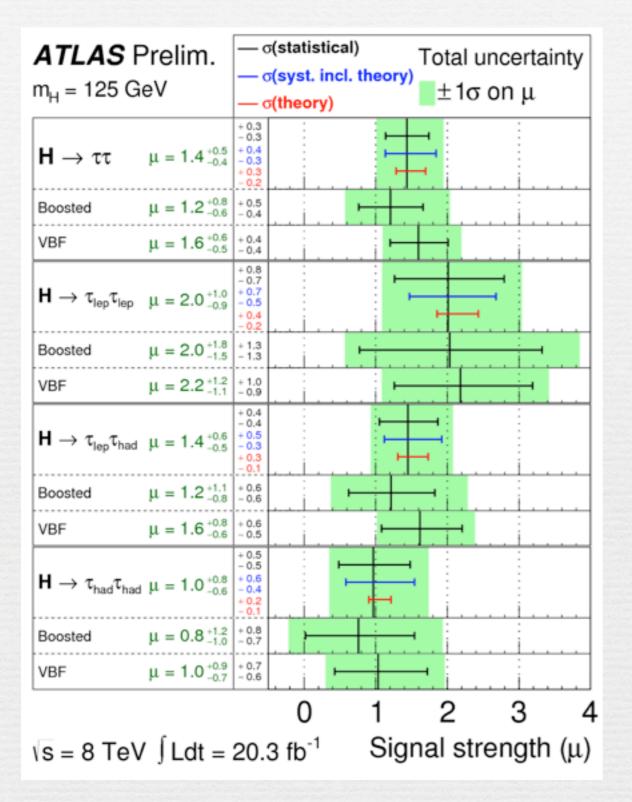

ATLAS-CONF-2013-108

Both hadronic and leptonic τ decays(τ_{had} , τ_{lep}) are used Events are categorized by "VBF" and "Boosted"

 τ +di-jets with large η τ with large p_{τ}^{τ}

Signals are extracted from the fit of the BDT score dist.

BDT(boosted decision tree): multivariate analysis based on E_{T}^{miss} , $m_{\tau} \tau$,,


bkg-like ← signal-like

Number of events in highest BDT score bin

VBF	Lep-lep	Lep-had	Had-had
Signal	5.7±1.7	8.7±2.5	8.8±2.2
Bckg	13.5±2.4	8.7±2.4	11.8±2.6
Data	19	→ 18	19

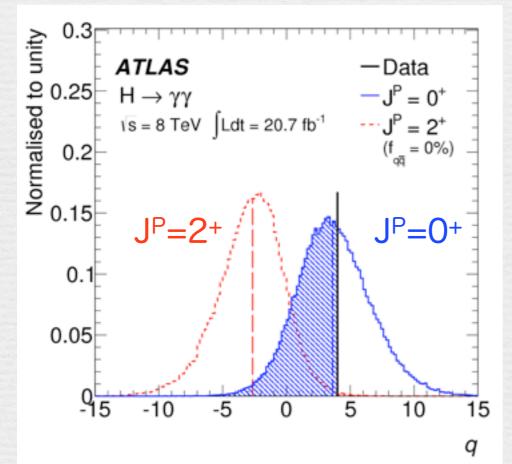
Boosted	Lep-lep	Lep-had	Had-had
Signal	2.6±1.7	8.0±2.5	3.6±1.1
Bckg	20.2±1.8	32±4	11.2±1.9
Data	20	34	15

$H \rightarrow \tau \tau$ direct measurement

ATLAS-CONF-2013-108 n(1+S/B) w. Events / 10 GeV ATLAS Preliminary Data $H(125) \rightarrow \tau\tau (\mu=1.4)$ H→ ττ VBF+Boosted 60 $L dt = 20.3 fb^{-1}$ 50 Fakes s = 8 TeVUncert. 40 30 20 10 w. Data-Bkg. 120 $m_{\tau\tau}^{\text{MMC}}$ [GeV]

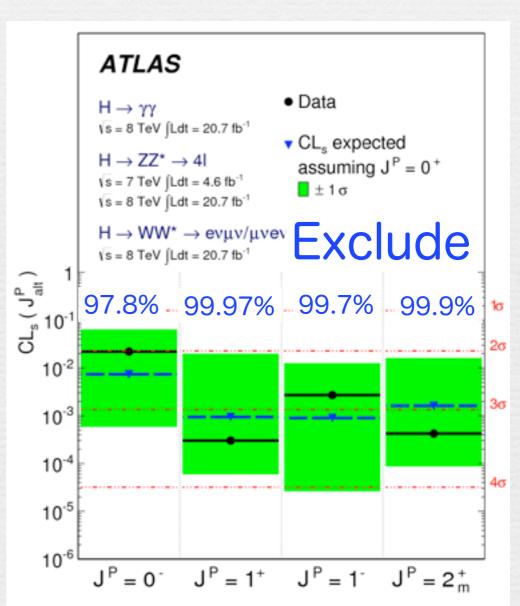
combined $\mu = 1.4^{+0.5}_{-0.4}$

Observed significance corresponds to 4.1 σ Expected significance corresponds to 3.2 σ


Spin-parity measurements arXiv:1307.1432

Spin-Parity JP=0-,1+,1-, 2+ are tested against SM (JP=0+)

Existence of $H \rightarrow \gamma \gamma$ rules out J=1 (Landau-Yang theorem)


Kinematics and angular distributions of the decay products sensitive to spinparity measurement

Log likelihood ratio $q = \log \frac{L(J^P = 0^+)}{L(J^P = 2^+)}$

2+ are excluded at 99.9% CL

 $J^{P}=0^{-},1^{+},1^{-}$ and 2+ are excluded at > 97.8% CL

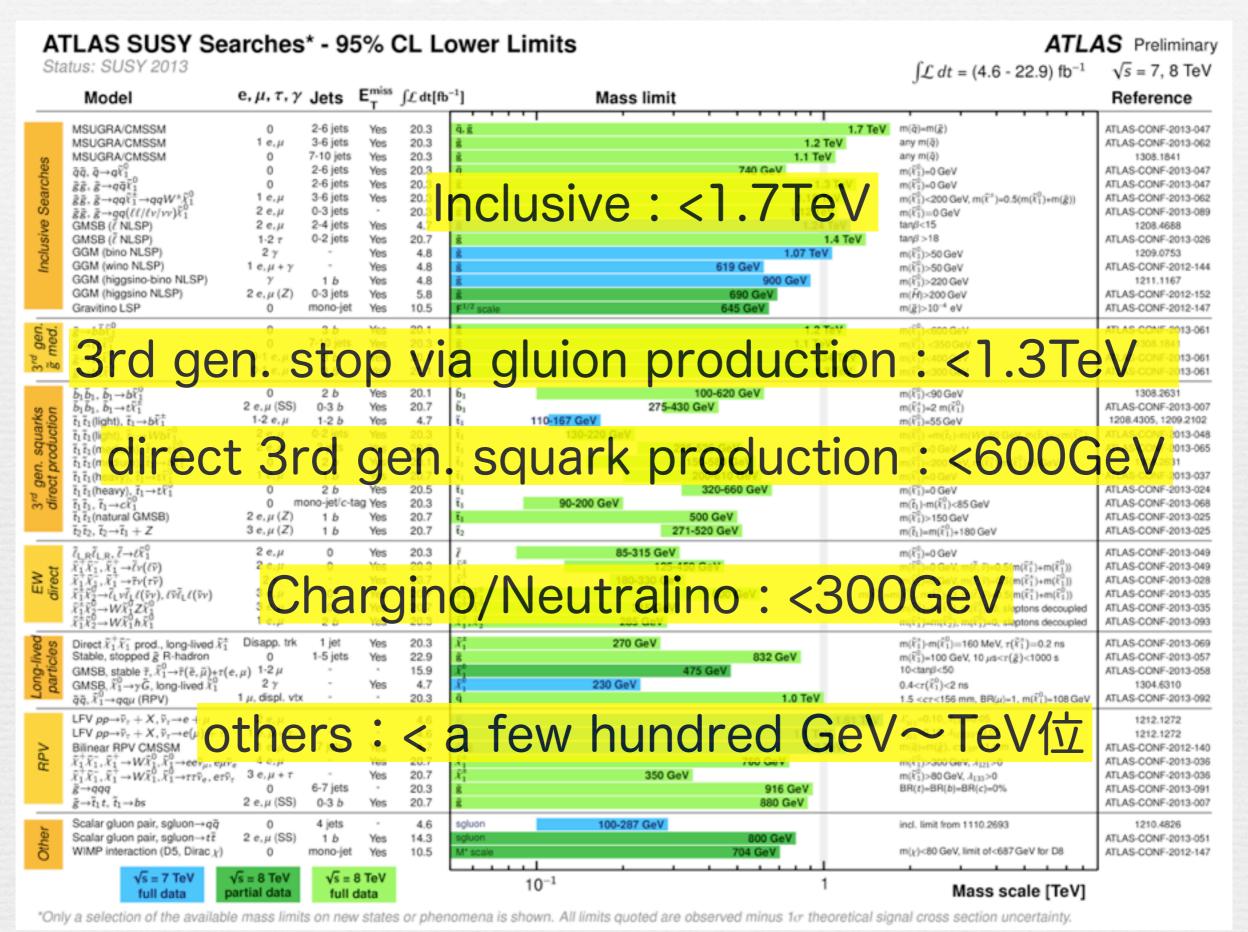
New physics searches

New physics has not been observed yet

We start excluding the large area of the parameter space of the new physics (ex. SUSY)

SUSY exclusion

ATLAS SUSY Searches* - 95% CL Lower Limits


ATLAS Preliminary

Status: SUSY 2013

Sta	atus: SUSY 2013							$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	E _T miss	∫£ dt[fb	p ⁻¹]	Mass limit		Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\bar{q}\bar{q}$, $\bar{q} \rightarrow q\bar{V}_{1}^{0}$ $\bar{g}\bar{g}$, $\bar{g} \rightarrow q\bar{q}\bar{V}_{1}^{0}$ $\bar{g}\bar{g}$, $\bar{g} \rightarrow qq\bar{V}_{1}^{1} \rightarrow qqW^{*}\bar{V}_{1}^{0}$ $\bar{g}\bar{g}$, $\bar{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\bar{V}_{1}^{0}$ GMSB ($\bar{\ell}$ NLSP) GMSB ($\bar{\ell}$ NLSP) GGM (bino NLSP) GGM (wino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino-bino NLSP) Gravitino LSP	0 1 e, µ 0 0 0 1 e, µ 2 e, µ 1.2 τ 2 γ 1 e, µ + γ γ 2 e, µ(Z)	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 5.8 10.5	q. g g g g q g g g g g g g	1.7 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.18 TeV 1.18 TeV 1.12 TeV 1.24 TeV 1.4 TeV 1.4 TeV 1.07 TeV 619 GeV 900 GeV 690 GeV 645 GeV	TeV $m(\tilde{q})=m(\tilde{g})$ $any m(\tilde{q})$ $any m(\tilde{q})$ $m(\tilde{V}_1^0)=0 \text{ GeV}$ $m(\tilde{V}_1^0)=0 \text{ GeV}$ $m(\tilde{V}_1^0)=0 \text{ GeV}$, $m(\tilde{v}_1^0)=0.5(m(\tilde{v}_1^0)+m(\tilde{g}))$ $m(\tilde{V}_1^0)=0 \text{ GeV}$ $\tan\beta<15$ $\tan\beta>18$ $m(\tilde{V}_1^0)>50 \text{ GeV}$ $m(\tilde{V}_1^0)>50 \text{ GeV}$ $m(\tilde{V}_1^0)>200 \text{ GeV}$ $m(\tilde{g})>10^{-4} \text{ eV}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-068 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3'd gen. g med.	$\tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ $\tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{0}$	0 0 0-1 e, μ 0-1 e, μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ ğ ğ	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$m(\bar{V}_1^0)$ <600 GeV $m(\bar{V}_1^0)$ <350 GeV $m(\bar{V}_1^0)$ <400 GeV $m(\bar{V}_1^0)$ <300 GeV	ATLAS-CONF-2013-061 1303.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{array}{l} \tilde{b}_1\tilde{b}_1,\ \tilde{b}_1\!\rightarrow\!b\tilde{\chi}_1^0\\ \tilde{b}_1\tilde{b}_1,\ \tilde{b}_1\!\rightarrow\!b\tilde{\chi}_1^0\\ \tilde{b}_1\tilde{b}_1,\ \tilde{b}_1\!\rightarrow\!t\tilde{\chi}_1^1\\ \tilde{t}_1\tilde{t}_1(\text{light}),\ \tilde{t}_1\!\rightarrow\!b\tilde{\chi}_1^1\\ \tilde{t}_1\tilde{t}_1(\text{light}),\ \tilde{t}_1\!\rightarrow\!Wb\tilde{\chi}_1^0\\ \tilde{t}_1\tilde{t}_1(\text{medium}),\ \tilde{t}_1\!\rightarrow\!t\tilde{\chi}_1^0\\ \tilde{t}_1\tilde{t}_1(\text{medium}),\ \tilde{t}_1\!\rightarrow\!b\tilde{\chi}_1^1\\ \tilde{t}_1\tilde{t}_1(\text{heavy}),\ \tilde{t}_1\!\rightarrow\!t\tilde{\chi}_1^0\\ \tilde{t}_1\tilde{t}_1(\text{heavy}),\ \tilde{t}_1\!\rightarrow\!t\tilde{\chi}_1^0\\ \tilde{t}_1\tilde{t}_1,\ \tilde{t}_1\!\rightarrow\!c\tilde{\chi}_1^0\\ \tilde{t}_1\tilde{t}_2,\ \tilde{t}_1\!\rightarrow\!c\tilde{\chi}_1^0\\ \tilde{t}_1\tilde{t}_2(\text{natural GMSB})\\ \tilde{t}_2\tilde{t}_2,\ \tilde{t}_2\!\rightarrow\!\tilde{t}_1+Z \end{array}$	0 2 e, \((SS) \) 1-2 e, \(\mu \) 2 e, \(\mu \) 2 e, \(\mu \) 0 1 e, \(\mu \) 0 0 m 2 e, \(\mu \) (Z) 3 e, \(\mu \) (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 cono-jet/c-1 1 b 1 b	Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	δ ₁ δ ₂ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 150-580 GeV 200-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{array}{l} m(\widetilde{\chi}_{1}^{0}) < 90 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) = 2 m(\widetilde{\chi}_{1}^{0}) \\ m(\widetilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) = 55 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) = m(\widetilde{\chi}_{1}) - m(W) - 50 \text{GeV}, m(\widetilde{\chi}_{1}) < < m(\widetilde{\chi}_{1}^{0}) \\ m(\widetilde{\chi}_{1}^{0}) = 0 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) - 150 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) = 150 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) = 150 \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) = 150 \text{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$\begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu \tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell \tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0}Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0}h \tilde{\chi}_{1}^{0} \end{split}$	2 e, µ 2 e, µ 2 τ 3 e, µ 3 e, µ 1 e, µ	0 0 0 0 2 b	Yes Yes Yes Yes Yes	20.3 20.7 20.7 20.7 20.7 20.3	$\tilde{\ell}$ \tilde{X}_{1}^{\pm} \tilde{X}_{1}^{\pm} \tilde{X}_{1}^{\pm} \tilde{X}_{1}^{\pm} \tilde{X}_{1}^{\pm} \tilde{X}_{2}^{0} \tilde{X}_{1}^{\pm} \tilde{X}_{2}^{0}	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV 315 GeV 285 GeV	$\begin{array}{c} m(\tilde{\mathcal{K}}_1^0) = 0 \text{ GeV} \\ m(\tilde{\mathcal{K}}_1^0) = 0 \text{ GeV}, \ m(\tilde{\ell}, \tilde{\tau}) = 0.5 (m(\tilde{\mathcal{K}}_1^n) + m(\tilde{\mathcal{K}}_1^0)) \\ m(\tilde{\mathcal{K}}_1^0) = 0 \text{ GeV}, \ m(\tilde{\tau}, \tilde{\tau}) = 0.5 (m(\tilde{\mathcal{K}}_1^n) + m(\tilde{\mathcal{K}}_1^0)) \\ m(\tilde{\mathcal{K}}_1^n) = m(\tilde{\mathcal{K}}_2^0), \ m(\tilde{\mathcal{K}}_1^0) = 0, \ m(\tilde{\ell}, \tilde{\tau}) = 0.5 (m(\tilde{\mathcal{K}}_1^n) + m(\tilde{\mathcal{K}}_1^0)) \\ m(\tilde{\mathcal{K}}_1^n) = m(\tilde{\mathcal{K}}_2^0), \ m(\tilde{\mathcal{K}}_1^0) = 0, \ \text{sleptons decoupled} \\ m(\tilde{\mathcal{K}}_1^n) = m(\tilde{\mathcal{K}}_2^0), \ m(\tilde{\mathcal{K}}_1^0) = 0, \ \text{sleptons decoupled} \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{X}_{1}^{+}\tilde{X}_{1}^{-}$ prod., long-lived \tilde{X}_{1}^{\pm} Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\tilde{e}, \tilde{\mu}) + \tilde{\tau}(\tilde{e}, \mu$	0	1 jet 1-5 jets - -	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	\bar{X}_{1}^{\pm} \bar{g} \bar{X}_{1}^{0} \bar{X}_{1}^{0} \bar{q}	270 GeV 832 GeV 475 GeV 1.0 TeV	$m(\tilde{\chi}_1^a)-m(\tilde{\chi}_1^0)=160 \text{ MeV}, \ \tau(\tilde{\chi}_1^a)=0.2 \text{ ns} \ m(\tilde{\chi}_1^0)=100 \text{ GeV}, \ 10 \ \mu s < r(\tilde{g}) < 1000 \text{ s} \ 10 < \tan\beta < 50 \ 0.4 < \tau(\tilde{\chi}_1^0) < 2 \text{ ns} \ 1.5 < c r < 156 \text{ mm}, \ BR(\mu)=1, \ m(\tilde{\chi}_1^0)=108 \text{ GeV}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e + \mu$ LFV $pp \rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$, $\tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}$, $e\mu\tilde{v}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$, $\tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{0} \rightarrow \tau\tau\tilde{v}_{e}$, $e\tau\tilde{v}$ $\tilde{g} \rightarrow qqq$ $\tilde{g} \rightarrow \tilde{t}_{1}t$, $\tilde{t}_{1} \rightarrow bs$		7 jets - - 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.7 20.7 20.7 20.3 20.7	ν, ν, q, g X ₁ [±] X ₁ [±] 8 g	1.61 T 1.1 TeV 1.2 TeV 760 GeV 350 GeV 916 GeV 880 GeV	TeV λ'_{311} =0.10, λ_{132} =0.05 λ'_{311} =0.10, $\lambda_{1\{2\}33}$ =0.05 $m(\bar{q})$ = $m(\bar{g})$, $c\tau_{LSP}$ <1 mm $m(\bar{\chi}_1^0)$ >300 GeV, λ_{121} >0 $m(\bar{\chi}_1^0)$ >80 GeV, λ_{133} >0 BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon→q\(\bar{q}\) Scalar gluon pair, sgluon→t\(\bar{t}\) WIMP interaction (D5, Dirac \(\chi\))	2 e,μ (SS) 0	4 jets 1 <i>b</i> mono-jet	Yes Yes	4.6 14.3 10.5	sgluon sgluon M* scale	100-287 GeV 800 GeV 704 GeV	incl. limit from 1110.2693 $m(\chi) < 80 \text{ GeV, limit of} < 687 \text{ GeV for D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
		√s = 8 TeV partial data		8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	

^{*}Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\sigma theoretical signal cross section uncertainty.

SUSY exclusion

Prospects of LHC upgrades

 2013
 2015
 2018
 2020
 2022

 Run-1
 shutdown1
 Run-2
 shutdown2
 Run-3
 shutdown3
 Hi-L LHC

$$\sqrt{s} = 13 - 14 \text{TeV}$$

$$\mathcal{L} = 1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$$

$$\int \mathcal{L}dt = 100 \text{fb}^{-1}$$

$$\sqrt{s} = 14 \text{TeV}$$

$$\mathcal{L} = 2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$$

$$\int \mathcal{L}dt = 300 \text{fb}^{-1}$$

$$\sqrt{s} = 14 \text{TeV}$$

$$\mathcal{L} = 5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$$

$$\int \mathcal{L}dt = 3000 \text{fb}^{-1}$$

The 14TeV run (Run 2) will start 2015.
Two other shutdowns after Run-2 are scheduled
Luminosity improvements will be achieved

To discover new physics beyond the SM To measure the Higgs property precisely

Conclusion

LHC-Run I ends with great success.

- SM physics has been precisely measured and understood.
- A Higgs-like resonance at 125.5GeV has been discovered.
 - → All measured properties are compatible with SM Higgs boson, so far
- The large area of the new physics parameter space has been excluded.

Nagoya-ATLAS group contributes greatly to:

- detector installation/commissioning/operation
- physics analysis (in particular top quark physics)

Enlarge our group activity, towards 14 TeV LHC-Run!!