Muon trigger electronics development toward high luminosity LHC

Makoto Tomoto

Nagoya University

Introduction

- LHC is the energy-frontier experiment to explore new physics by :
 - precise measurements of Higgs couplings and the other SM processes, and
 - direct searches for new particles and phenomena
- A series of LHC accelerator and ATLAS detector upgrades are scheduled.

Phase-2 upgrades

- The detector for HL-LHC should be designed for peak luminosity of 7×10³⁴ cm⁻² s⁻¹ and integrated luminosity of 3000 fb⁻¹ (300 fb⁻¹/year).
 - The rates for low-q² QCD background events are increased.
 - The average number of collisions per bunch crossing (pileup) is the level of 200.
 - The detector and electronics are exposed to more intense radiation.

A top quark pair production event with 200 collisions (pileup)

- The detector upgrade for HL-LHC is focused on
 - Development of the advanced trigger and data acquisition system
 - ➡Muon trigger upgrade

- Replacement of the inner and forward detectors
- ➡Inner tracker upgrade

Trigger and readout scheme

• To take full advantage of HL-LHC, a new trigger and readout scheme with longer latency and higher rate is essential.

	Latency	Rate
Current	2.5 µs	100 kHz
HL-LHC	10 µs	1 MHz

- Most of the electronics for muon system should be replaced by new ones.
- The advanced muon trigger algorithm is developed to reduce the background rate with keeping the efficiency of the interesting events high.
 - Coincidence trigger \rightarrow Tracking trigger

Muon detectors :

Monitored drift tube (MDT): barrel & end-cap Resistive plate chamber (RPC): barrel

End-cap muon trigger upgrade

- In HL-LHC, the end-cap muon trigger makes trigger decision using the deflection angle (β) between track segments provided by the inner and outer stations
 - New small wheel (introduced after the Phase1 upgrade) will provide the track segments with ~1 mrad resolution.
 - Upgraded TGC trigger will provide the track segments with ~3 mrad resolution.
 - MDT trigger will be newly introduced from Phase2 upgrade and provide the track segments with ~1 mrad resolution.

Performance of new muon trigger

- Trigger rate study for single muon trigger with 20 GeV threshold is emulated using Run1 data, $\sqrt{s}=8$ TeV, 25 ns bunch spacing
 - Rate reduction by the TGC tracking trigger is about 30% in end-cap region (1.3 < $|\eta| < 2.4$)
 - Rate reduction by the combination of the TGC tracking trigger and the MDT tracking trigger is about 50% in $|\eta| < 2.4$
 - Efficiency of muons reconstructed as $p_T>20$ GeV by offline is better than 95%

End-cap muon track trigger electronics

(20 Gbps hit data transmitter, discriminator threshold)

K. Shukutani T. Kawaguchi MDT mezzanine card (TDC readout of drift tube signal)

K. Mizukoshi Y. Horii

Prototype of TGC front-end board

8

- This board has all functions for HL-LHC upgrade.
 - Bunch crossing ID ASICs need to be replaced by new ones.
 - Operating devices (FPGA etc.) in the intense radiation needs to be tested.

Demonstration of TGC front-end board with test beam

The basic functionalities of TGC front-end board has been demonstrated.

Prototype of MDT mezzanine card

- 24 channels
- 112.9 mm × 92.71 mm
- Chips
 - 3 ASD (amp-shaper-discriminator) ASIC

10

- 1 Kintex-7 FPGA (Xilinx) for TDC
- I/O
 - 3 Input connectors for input (other side)
 - 1 LVDS copper connector for output
 - SFP+ connector (6.4 Gbps) for debug
 - 2 SMA connectors
- This board has all functions for HL-LHC upgrade.
 - ASD ASIC needs to be replaced by new one (developed by MPI group).
 - Radiation-tolerant TDC device needs to be considered.
 - We are testing to operate FPGA in the intense radiation.
 - Alternative candidate is the MDT mezzanine card with ASIC TDC (proposed by US group)

TDC on FPGA

11

- A multisampling scheme using quad phase clocks with frequency of 320 MHz is employed to make the bin size of 0.78 nsec.
- The quad phase clocks are synchronized with 40 MHz reference clock (from LHC).
- Time resolution is measured using the test pulse to be 0.23 nsec = quantization error (0.78 / $\sqrt{12}$)
- The linearity from 0.5 $\,\mu\,\text{sec}$ to 100 $\,\mu\,\text{s}$ is confirmed.
- Raising reference clock up to 110 MHz, the bin size of 0.28 nsec can be achieved.

The digital part of the mezzanine card has been tested!

 \rightarrow Extracting drift-time information from MDT hits is on going.

12

Radiation tolerant FPGA

- Choosing radiation tolerant FPGA is crucial for the TGC/MDT electronics upgrades
 - SRAM type (e.g. Xilinx-Kintex) is expected to have high radiation tolerance against the total ionization dose (TID), but low radiation tolerance against the single event effect (SEE).
 - Flash memory type (e.g. Microsemi-IGLOO2) is expected to have high radiation tolerance against SEE
- \cdot We produced a test board checking radiation tolerance of IGLOO2 FPGA.
- γ irradiation test has been performed and found:
 - Downloading firmware got impossible within 100 Gy.
 - Logics already downloaded seem to survive with a higher dose of 100-200 Gy.
 - Depending on the location of the front-end electronics in ATLAS, IGLOO2 FPGA can/cannot be used for HL-LHC.
- Further studies of radiation tolerant FPGA is needed.
 - Rad-tolerance of IGLOO2 FPGA against SEE
 - Rad-tolerance of Kintex FPGA against TID and SEE

JSPS grant

"Formation of the international network to challenge the discovery of the new particles from the advanced muon trigger development"

Conclusion

- To take full advantage of HL-LHC physics program, replacement of the trigger and readout electronics with longer latency and higher rate is essential.
- We devote our large efforts to developing the front-end boards and trigger algorithm for TGC and MDT tracking trigger.
- The functionalities of the front-end boards has been demonstrated using test beam and test pulse.
- The radiation tolerance of FPGA is under consideration.

Young staffs and students from Nagoya are very active in HL-LHC upgrade project !!

Backup

15

Muon trigger upgrade

Trigger/DAQ scheme upgrade → Replacement of all electronics
L0 Trigger : latency=6µs, Rate=1MHz
L1 Trigger : latency=20µs, Rate=400kHz

2. Development of the advanced trigger algorithm

TGC/RPC track trigger, MDT trigger Monitored Drift Tube(MDT)

FPGA radiation-tolerance study

	Kintex-7 FPGA (Xilinx)	IGLOO2 FPGA (Microsemi)
Configuration memory	SRAM	flash memory
Estimated bit error rate @phase-II	6.5 / 1 h	< 1 / 200 days
TID	~ 10 kGy (65 nm CMOS Vertex-5)	~ 100 Gy (65 nm IGOOL2)

