Research plan of CO1

Vacuum and space-time with top quark

Makoto Tomoto

Nagoya University

Introduction

Top quark :

- Discovered in 1995 by Tevatron
- The heaviest particle in SM $(M_t = 173.21 \pm 0.51 \pm 0.71 \text{ GeV})$
 - The coupling with Higgs (Yt) ~1.
 - Sensitive to new physics BSM
- Short lifetime around ~10⁻²⁵ s
 - Information on a bare quark

- LHC is the top quark factory experiment
 - ~10 top quark pairs are produced every second in Run 2 LHC
- We can approach the new particle physics phenomenology relating to vacuum and space-time, using top quark as a probe.
 - measurements of Higgs-top Yukawa coupling $Y_{\rm t}$
 - direct searches of BSM (e.g. stop, gкк, etc.)

Former JSPS grant

Scientific Research in Innovative area 2011-2015, Group A04 : "Top quark physics"

- We measured inclusive ttbar production cross-section very precisely (~4% precision is better than NNLO+NNLL prediction of ~5%)
- We found pQCD worked very well in the range from $\sqrt{s}{=}2$ TeV to $\sqrt{s}{=}13$ TeV

- Many doctor theses were released from the top quark physics,
- "The top-quark pair production cross-section measurement in the dilepton final states at proton-proton collisions with $\sqrt{s}=7$ TeV", Y Okumura (\rightarrow postdoc in U. of Chicago \rightarrow Assistant prof. U of Tokyo)
- "Meapsurement of the top quark pair production cross section with SQRT(s) = 7 TeV of pp collisions at LHC with btagging in the dilepton final state with the ATLAS detector", M Hirose (Osaka → postdoc in TIT → postdoc in Freiburg)
- "Measurement of the top-quark pair production cross-section in pp collisions at √s=7TeV using final states with an electron or a muon and a hadronically decaying tau-lepton", Y. Takahashi Nagoya (→ CERN fellow → U of Zurich)
- "Measurement of the W boson polarization in top quark decays using the di-lepton final state of the top quark pair in pp collisions with √s=7TeV", S. Hasegawa (Nagoya → postdoc at FNAL)
- "Measurement of differential cross sections for top quark pair production in pp collisions at sqrt(s)=7 TeV with the ATLAS detector", M. Yamada (KEK → postdoc at KEK)
- Development of the fast track trigger (FTK) of ATLAS was completed
 - \rightarrow Led FTK to installation/commissioning phase.

CO1 group : "Vacuum and space-time with top quark"

Research subjects

- 1. Top quark physics with high statistics
 - (1) precise measurements of the top quark properties
 - (2) direct measurements of the Higgs-top Yukawa coupling using ttH process
 - (3) new physics searches via rare decays of top quark (e.g. FCNC)
 - (4) new physics searches (such us SUSY and extra dimension) with top quark
- 2. Development of the next generation muon trigger technology for top quark physics in future experiment (e.g. HL-LHC)

Organization

Name	Institute	Research
Makoto Tomoto	Nagoya U.	Leader, top quark, first-level muon trigger
Yuji Yamazaki	Kobe U.	top quark, high-level muon trigger
Osamu Sasaki	KEK	muon trigger electronics
Yasuyuki Horii	Nagoya U.	ttH, first-level muon trigger
Junpei Maeda	Kobe U.	ttbar resonance, first-level muon trigger
Shima Shimizu	Kobe U.	precision top quark, first-level muon trigger

About 20 researchers in total (including about 5 doctor and about 10 master course students)

Top quark physics

Precise measurements of production

- High statistics allow us to make detailed studies
 - d σ /dx as a function of kinematic variable x= pT^t, |y^t|, m^{tt}, pT^{tt}, and |y^{tt}|
 - differential cross-section as a function of number of additional (b) jets
 - tt+X (X=Z, W, γ etc) production cross section
- Differential distributions probe pQCD more precisely
 - constrain modeling of parton shower and hadronization
- Differential distributions are sensitive to new physics searches
 - Deviations might be detectable only in a certain phase space or final state.
 - tt+X is important backgrounds for Higgs analysis and searches
 - Reduced modeling uncertainties enhance sensitivity to new physics.

Precise measurement of top quark mass

M_t is related to radiative corrections

Vacuum stability depends on exact value of Mt

Top quark mass measurement is one of the area we should contribute.

Higgs-top Yukawa coupling

Indirect measurement from ggF

• Direct measurement from ttH

- ttH (H $\rightarrow \gamma \gamma$, multilepton, bb) measured with Run 1 and Run 2 data .
 - obs. (exp.) significance= 2.8 (1.8) σ
 - modeling of tt+>1b is dominant syst.
- The discovery of ttH can be expected by the end of Run2
- ttH analysis in collaboration with group B ("Vacuum") is the top priority in CO1 group researches.

Top quark as a probe of new physics

- In case $M_{\tilde{t}} M_{\tilde{\chi}_1^0} \sim M_t$, stop pair production is only detectable with the precision measurement in top quark pair production cross section.
 - ttbar spin analysis correlations constrained $M_{\tilde{t}} < 190~{\rm GeV}$
 - The analysis with boosted ttbar+ISR jet production constrained $230 \text{ GeV} < M_{\tilde{t}} < 380 \text{ GeV}$
- Same strategy can be made for gluino to ttbar decay, in case $M_{\tilde{g}}-M_{\tilde{\chi}^0_1}\sim 2M_t$
 - precision measurement in $t\bar{t}t\bar{t}$ signature

- Ditop resonance searches (current limit is m<~2TeV) are also target of C01 group research.
- These studies need to be done in collaboration with group A ("space-time").

FCNC

- In SM, FCNC is forbidden at tree level
 - It is allowed only via loops but highly suppressed (Br<10-11)
- Existing new physics enhances the branching fraction of the FCNC process

• Some of BSM scenario (e.g. 2HDM) predicts branching fraction ~ 10^{-5}

• At the end of Run2, 95% limits for some channel will be reached the level of 10⁻⁵

Next generation muon trigger for HL-LHC

11

Trigger and readout scheme

To take full advantage of HL-LHC physics program with peak luminosity of 7×10³⁴ cm⁻² s⁻¹ and integrated luminosity of 3000 fb⁻¹ (300 fb⁻¹/year), a new trigger and readout scheme with longer latency and higher rate is essential.

	Latency	Rate
Current (L1)	2.5 µs	100 kHz
HL-LHC (LO)	10 µs	1 MHz

- Most of the electronics for muon system should be replaced by new ones.
- The advanced muon trigger algorithm is developed to reduce the background rate with keeping the efficiency of the top quark production high.
 - Coincidence trigger \rightarrow Tracking trigger

Muon trigger upgrade

- In HL-LHC, the end-cap muon trigger makes trigger decision using the deflection angle (β) between track segments provided by the inner and outer stations
 - New small wheel (introduced before the HL-LHC upgrade) will provide the track segments with ~1 mrad resolution.
 - Upgraded TGC trigger will provide the track segments with ~3 mrad resolution.
 - MDT trigger will be newly introduced from HL-LHC upgrade and provide the track segments with ~1 mrad resolution.

Performance of new muon trigger

- Trigger rate study for single muon trigger with 20 GeV threshold is emulated using Run1 data, $\sqrt{s}=8$ TeV, 25 ns bunch spacing
 - Rate reduction by the TGC tracking trigger is about 30% in end-cap region (1.3 < $|\eta| < 2.4$)
 - Rate reduction by the combination of the TGC tracking trigger and the MDT tracking trigger is about 50% in $|\eta| < 2.4$
 - Efficiency of muons reconstructed as $p_T>20$ GeV by offline is better than 95%

Muon track trigger electronics

TGC front-end board (20 Gbps hit data transmitter)

MDT mezzanine card (TDC readout of drift tube signal)

Trigger processor board

Beam test

• Basic functionalities of the prototype-modules have been demonstrated successfully with the muon beam at CERN H8C beam line (Nov. 2016) !!

- We will finalize the design of the muon trigger algorithm and electronics
 - Technical design report will be published in 2017

Conclusion

- Top quark is one of the most important particle to discover the new particle physics phenomenology relating to vacuum and space-time
- The researches of C01 group will be focused on
 (1) precise measurements of the top quark properties
 (2) direct measurements of the Higgs-top Yukawa coupling using ttH process
 (3) new physics searches via rare decays of top quarks (e.g. FCNC)
 (4) new physics (SUSY and extra dimension) searches with top quarks
- Please let us know if you have any interesting analyses to search for new physics related to vacuum and space-time using top quark
- We also develop the next generation muon trigger technology to keep the acceptance of the top quark production high in the future experiment (HL-LHC)

backup

18

Top quark as a probe of new physics

20

物理過程	gкк→tt	Z' _{topcolor} →tt
現在	2.2TeV	1.8TeV
L=300fb ⁻¹	4.3TeV	3.3TeV
L=3000fb ⁻¹	6.7TeV	5.5TeV

FCNC

stop pair production in scenarios with compressed mass spectra

22