Top quark physics results at LHC

Makoto Tomoto Nagoya University

Introduction

- Discovered in 1995 at the Tevatron Fop mass [GeV] Heaviest particle in SM 190 ▶ Yt~1 180 Sensitive to new physics BSM 170 Short lifetime ~ 10^{-25} s Information on a bare quark 160 Results of the EW fit Measurements top quark pair produced via QCD process 150 Tevatron EPEWWG Tevatron + LHC Gfitter, incl. M. (searches or meas.) Decays via EW process 140 1995 2000 2005 2010 2015 Year
- LHC is a top quark factory
 - In Run 2, a top quark pair every second
- Top quark physics is crucial to the LHC
 - Precise measurement of the QCD and EW
 - Probe couplings to Higgs, W, Z, γ
 - \blacktriangleright 3rd generation models within BSM (stop, ...)
 - Significant background to searches and Higgs

Large Hadron Collider

LHC実験のこれまでの歩み

-2009	:建設	
2009	:加速器事故	
2010	:Physics run開始	
2011	:√s=7TeVの物理データ収集	
2012	:√s=8TeVの物理データ収集	J RUIT I
2012/7/4	:ヒッグス粒子の発見	
2013-2015	: Shutdown	
2015	:√s=13TeVの物理データ収集	Run 2

Publishされた論文数:477! (2016年2月14日)

Run 1 : 2010 - 2012

Run 2 : 2015 -

√s=13TeV 25ns bunch spacing

top quark pair production in p-p collision

A proton consists of not only u-u-d valence quarks but also huge amounts of sea quarks and gluons \rightarrow parton The cross section cannot be extracted without the knowledge of the parton density.

$$\sigma_{pp \to t\bar{t}} = \sum_{ij} \int \mathrm{d}x_1 \int \mathrm{d}x_2 f_i(x_1,\mu) f_j(x_2,\mu) \hat{\sigma}_{ij \to t\bar{t}}(s,\alpha_S(\hat{\mu}),Q/\mu)$$

$$P \xrightarrow{f_i i x_1 P} \widehat{\sigma_{ij \to t\bar{t}}} \longrightarrow X$$

$$P \xrightarrow{f_j j x_2 P} \xrightarrow{f_j x_2$$

 $\hat{\sigma}_{ij \rightarrow t \overline{t}} ~~ \underset{\rightarrow \text{ perturbative QCD}}{\text{parton(j) cross-section}}$

 $f_i(x,\mu)$ Parton distribution function

top quark pair production at LHC

$$\sqrt{\hat{s}} = \sqrt{x_1 x_2} \sqrt{s_{pp}} \qquad x \sim \frac{2m_t}{\sqrt{s}}$$

LHCはgluonのPDFに感度

	x	qq : gg	$\sigma_{ m tt}$ (pb)	±scale	±pdf
7TeV	0.049	15 : 85	172.0	~3%	2%3%
8TeV	0.043	12 : 88	245.8	~3%	~2.5%
14TeV	0.025	10 : 90	953.6	~3%	2%
Tevatoron 1.96 TeV	0.18	90 : 10	7.165	~2%	2%
				arXiv:	1303.6254

Top quark decay

Br(t→Wb) ~ 100% 2つのWの崩壊によって、categorizeされる

- dilepton 5%
- lepton+jets 30%
- all jets 45%
- tau+X (charged Higgsに感度)
- rare decay (FCNC decayなど)

A Toroidal Lhc AppratuS

b-jet id & τ -id

Run 2からInsertable B layer (IBL)を導入

τ-jet id
energyの広がり:
e/*γ*より広い
quark/gluonより狭い
荷電粒子:

Event selection

⊖ dilepton

- 2 isolated leptons
- Z mass veto (for ee, $\mu \mu$)
- ≥2 jets, at least one jet b-tagged

○ single lepton

- 1 isolated lepton
- E^{Tmiss}, M^T(W)でmulti-jet, W+jetsをcontrol
- ≥4 jets, at least one jet b-tagged

\bigcirc all-jets

- No isolated lepton
- ≧6 jets, 2 jets b-tagged
- Small E^{Tmiss} significance, centrality

```
b-tag: typically \varepsilon =70%,
rejection factor=130 (light quark), 5 (c-quark)
```


Top quark physics program

Top quark pair production cross-section

Inclusive cross-section

ATLAS-CONF-2015-049

 $\sigma_{t\bar{t}} = 829 \pm 50 \pm 56 \pm 83 \text{ pb}$ $\sigma_{t\bar{t}}^{\text{NNLO+NNLL}} = 832^{+20}_{-29}(\text{scale})^{+35}_{-35}(\text{PDF}\alpha_{\text{S}}) \text{ pb}$

Inclusive cross-section in Run2

Inclusive cross-section in Run1

 $\sigma_{\rm tt}$ VS \sqrt{S}

Differential cross-section

- PDF, kinematics of ttbar system, parton shower evolutionなどの検証
- p⊤(top), p⊤(ttbar), m(ttbar), y(ttbar), Njets ... 分布などの依存性を確認
 - pT(top)などはISR, FSRに感度
 - y(ttbar)はgluonのPDFに感度

$$y = \frac{1}{2} \ln \left[(E + p_z) / (E - p_z) \right] = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right)$$

- m(ttbar)はHigh-Q²の(新)物理に感度
- top quarkのboost具合に応じて:
 - "Resolved" regime: top quark からのlepton, jetが分離されている
 - "boosted" regime : top quarkからの全粒子が"fat jet"として再構成

$d\sigma/dp_T$ differential cross-section

evel

ATLAS Simulation

 Unfolding reconstructed object → particle level stable truth level particlesによる再構成 parton levelへの更なる外挿の不定性を減らす

 $\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\mathcal{L} \cdot \Delta X^{i}} \cdot f_{\mathrm{eff}}^{i} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\mathrm{match}}^{j} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bg}}^{j}\right)$

50

30

$d\sigma/dy$ differential cross section

MC@NLO+HERWIG generator を使って、PDFの比較

$d\sigma/dp_T$ differential cross-section

pt^{thad} [GeV] (parton level)

- Unfolding reconstructed object \rightarrow parton level

$$\frac{\mathrm{d}\sigma^{\mathrm{full}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\mathcal{L}\cdot\mathcal{B}\cdot\Delta X^{i}}\cdot\hat{f}_{\mathrm{eff}}^{i}\cdot\sum_{j}\hat{\mathcal{M}}_{ij}^{-1}\cdot\hat{f}_{\mathrm{acc}}^{j}\cdot\hat{f}_{\mathrm{ljets}}^{i}\cdot\left(N_{\mathrm{reco}}^{j}-N_{\mathrm{bg}}^{j}\right)$$

MCの方がdataよりもハードな傾向

Migration [%

$d\sigma/dp_T$ differential cross-section

Full NNLO calculation is in good agreement with data.

ttbar+X cross-section

ttbar+MET

Top quark mass

Top mass : Standard method

Eur. Phys. J. C (2015) 75:158 , Eur. Phys. J. C (2015) 75:330, etc

Standard Methodによる質量測定のまとめ²⁹

 $m_t = 172.99 \pm 0.91 \text{ GeV}$ (ATLAS Comb.) 0.5% arXiv:1503.05427 0.5% $m_t = 173.34 \pm 0.76 \text{ GeV}$ (World Comb.) 0.4% arXiv:1403.4427

Top mass : Other methods

O Kinematic Endpoint Eur.Phys.J.C(2013)73:2494

 $m_t = 173.9 \pm 0.9(\text{stat})^{+1.7}_{-2.1}(\text{syst}) \text{ GeV}$

○ t-channel single top ATLAS-CONF-2014-055 Template fit of lepton-b-jet mass

 $m_t = 172.2 \pm 0.7 (\text{stat}) \pm 2.0 (\text{syst}) \text{ GeV}$

CMS Simulation, \s=8 TeV 50.76 🗕 eu-channel 0.74 µ+jets-channel e+jets-channel 0.72 0.7 0.68 0.66 168 170 172 174 176 178 180 182 vs = 8TeV data Best fit: m_{ine} = 172.2 ± 0.7 (stat.) GeV Events / 1000 Single-top t-channel signal tť signal Background ATLAS Preliminary Ldt = 20.3 fb 500

120

140

m(lb) [GeV]

100

3

5.5

Standard methodと異なるSystematics

Top mass : pole mass from σ_{tt}

Top mass : pole mass with ttbar+1 jet ³²

) Differential cross sectionによる間接的なpole mass測定

Eur. Phys. J C73 (2013) 2438, arXiv:1303.6415で紹介 gluon radiationがtop quark massに依存すること を利用

$$\mathcal{R}(m_t^{pole}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1jet}} \frac{d\sigma_{t\bar{t}+1jet}}{d\rho_s} (m_t^{pole}, \rho_s)$$

 $\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}j}}}$ $m_0 = 170 \text{ GeV}$ (mt位の任意量)

○ single lepton終状態による解析

- lepton, Ermissからleptonic topのWを再構成
- WのKinematics条件からhadronic top の2jetを選択

- $m_t^{\text{lep}} - m_t^{\text{had}}$ が最小となるb-jetとWの組を決定

- ttbar以外のjetは、pT>50GeVのleading jet
- ρ_s 分布をunfoldして χ^2 fitで質量を決定

 $m_t^{\text{pole}} = 173.7 \pm 1.5(\text{stat.}) \pm 1.4(\text{syst.}) \stackrel{+1.0}{_{-0.5}}(\text{theo.}) \text{ GeV}$

arXiv:1507.01769

Top mass: pole mass測定のまとめ

Top quark property

Charge asymmetry

Charge asymmetry

ttbar事象をkinematical fitを用いて再構成

△|y|分布をparton levelにunfold

Inclusive測定の他に, mtt, pT,tt,などの関数でAcの測定

 $A_C = 0.009 \pm 0.005 \text{ (stat.+syst.)}$

Charge asymmetry LHC top anti-top |y_ī| 0.08 Ac ATLAS Z': Flavor violating Z' exchanged in W Carles Samiliant 0.06 t-channel in $u\overline{u} \rightarrow t\overline{t}$ and with righthanded Z'tu couplings W': W' boson with right-handed 0.04 couplings exchanged in t-channel in dd→tt $^{\rm O}$ Ω⁴: Color-sextet scalar with right-handed 0.02 ATLAS flavor violating tu-couplings and SM exchanged in u-channel ω^4 : Color triplet with flavor violating 0 CMS tu-couplings, right-handed, exchanged in u-channel in $u\overline{u} \rightarrow t\overline{t}$

-0.02

0

CDF

0.2

8

0.1

37

Models from

0.3

 A_{FB}

PRD 84, 115013;

0.4

Tevatron 4

0.5

top anti-top

JHEP 1109, 097

 G_{u} : Axigluon, color octet vector with axial couplings

Flavor changing neutral current

in

NNN.

 Z^0

 \bar{c}, \bar{u}

^g m

и, с

arXiv:1311.2028

Process	\mathbf{SM}	$2 \mathrm{HDM}(\mathrm{FV})$	2 HDM(FC)	MSSM	RPV	\mathbf{RS}
$t \to Z u$	$7 imes 10^{-17}$	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	$1 imes 10^{-14}$	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \to g u$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	$5 imes 10^{-12}$	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t\to\gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
$t\to \gamma c$	$5 imes 10^{-14}$	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
$t \to h u$	2×10^{-17}	$6 imes 10^{-6}$	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

tt→ZqWb→ ℓ ℓ q ℓ ν b (3 leptons, ≥2jets(≥1 b-jet), MET)

Flavor changing neutral current $t \rightarrow cX$

$\mathcal{B}(t \to Zq)$	$19.5{\rm fb}^{-1}$ @ 8 TeV	$300{\rm fb}^{-1}$ @ 14 TeV	$3000 \text{fb}^{-1} @ 14 \text{TeV}$
Exp. bkg. yield	3.2	26.8	268
Expected limit	< 0.10%	< 0.027%	< 0.010%
1σ range	0.06 - 0.13%	0.018 - 0.038%	0.007 - 0.014%
2σ range	0.05 - 0.20%	0.013 - 0.051%	0.005 - 0.020%

CMS-PAS-FTR-13-016

その他のTop quark properties

 \bigcirc Top quark charge JHEP11(2013)031 $q_t = 0.64 \pm 0.02 \pm 0.08$

\bigcirc Top polarization and spin correlation

Phys. Rev. Lett 111, 232002 (2013) Phys. Rev. Lett 114, 142001 (2015)

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4}(1+\alpha_1 P_1\cos\theta_1 + \alpha_2 P_2\cos\theta_2 - C\cos\theta_1\cos\theta_2)$

○ Wtb coupling

JHEP06(2012)088 JHEP10(2013)167 arXiv:1410.1154

ATLAS-CONF-2013-032

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\overline{b}\gamma^{\mu}\left(V_{\rm L}P_{\rm L} + \frac{V_{\rm R}}{P_{\rm R}}\right)tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\overline{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}}\left(\underline{g_{\rm L}}P_{\rm L} + \underline{g_{\rm R}}P_{\rm R}\right)tW_{\mu}^{-} + \text{h.c.}$$

 \bigcirc ...

Consistent with SM prediction

New physics search with top quark

ATLAS Exotics Searches* - 95% CL Exclusion

Status: July 2015

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$

 $\int \int dt = (4.7 - 20.3) \text{ fb}^{-1}$

Mass scale [TeV]

						∫~(20.0/ 10	
	Model	ί,γ	Jets	E ^{miss} ∫	L dt[fb⁻	I Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD BH high N_{trk} ADD BH high Σp_T ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ 2UED / RPP	$\begin{array}{c} - \\ 2e, \mu \\ 1e, \mu \\ - \\ 2\mu (SS) \\ \ge 1e, \mu \\ - \\ 2e, \mu \\ 2\gamma \\ 2e, \mu \\ 1e, \mu \\ - \\ 1e, \mu \ge 1 \\ 2e, \mu (SS) \ge 1 \\ \end{array}$	$\geq 1 j$ - 1 j 2 j - $\geq 2 j$ $\geq 2 j$ 2 j/1 J 2 j/1 J 4 b 1 b, $\geq 1 J/2$	Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mp 5.25 TeV 7 Ms 4.7 TeV 7 Mth 5.2 TeV 7 Mth 5.2 TeV 7 Mth 5.8 TeV 7 Gxx mass 2.68 TeV 7 Gxx mass 740 GeV 7 W' mass 760 GeV 7 Kr mass 500-720 GeV 7 Kr mass 960 GeV 7	p = 2 p = 3 HLZ p = 6 p = 6 $m = 6$, $M_D = 3 \text{ TeV}$, non-rot BH $p = 6$, $M_D = 3 \text{ TeV}$, non-rot BH $p = 6$, $M_D = 3 \text{ TeV}$, non-rot BH $p = 6$, $M_D = 3 \text{ TeV}$, non-rot BH $p = 6$, $M_D = 1 \text{ TeV}$, non-rot BH p = 0.1 p = 0.1 p = 0.1 p = 1.0 p = 1.0 p = 1.0 p = 0.925	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.08988 1405.4123 1504.05511 1409.5110 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{SSM} \ W' \to \ell\nu \\ \mathrm{EGM} \ W' \to WZ \to \ell\nu \ \ell'\ell' \\ \mathrm{EGM} \ W' \to WZ \to qq\ell\ell \\ \mathrm{EGM} \ W' \to WZ \to qqqq \\ \mathrm{HVT} \ W' \to WH \to \ell\nu bb \\ \mathrm{LRSM} \ W'_R \to t\bar{b} \\ \mathrm{LRSM} \ W'_\rho \to t\bar{b} \end{array}$	2 e,µ 2 ⊤ 1 e,µ 3 e,µ 2 e,µ 1 e,µ 1 e,µ 2 e,µ ≥	- 2j/1J 2J 2b 2b,0-1j 21b,1J	- Yes Yes - Yes Yes	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.3-1.5 TeV W' mass 1.47 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$t_V = 1$	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886
ũ	Cl qqqq Cl qqll Cl uutt	2 e,μ 2 e,μ(SS) ≥	2j 	- Yes	17.3 20.3 20.3	Λ 12.0 TeV Λ 4.3 TeV	$\eta_{LL} = -1$ 21.6 TeV $\eta_{LL} = -1$ $C_{LL} = 1$	1504.00357 1407.2410 1504.04605
5	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ 1	≥1j 1J,≤1j	Yes	20.3	M. 974 GeV 4 M. 2.4 TeV 4	t 90% CL for $m(\chi) < 100 \text{ GeV}$ t 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ГO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2.e 2.µ 1.e.µ ≥	≥2j ≥2j :1 b, ≥3j	_ Yes	20.3 20.3 20.3	LQ mass 1.05 TeV 4 LQ mass 1.0 TeV 4 LQ mass 640 GeV 4	2 = 1 2 = 1 2 = 0	Preliminary Preliminary Preliminary
Heavy quarks	$\begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array}$	$1 e, \mu \ge$ $1 e, \mu \ge$ $1 e, \mu \ge$ $2 \ge 3 e, \mu$ $1 e, \mu \ge$	$2 b, \ge 3 j$ $1 b, \ge 3 j$ $2 b, \ge 3 j$ $\ge 2/\ge 1 b$ $1 b, \ge 5 j$	Yes Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass 855 GeV 1 Y mass 770 GeV Y B mass 735 GeV Y B mass 755 GeV Y T s/3 mass 840 GeV Y	in (T,B) doublet in (B,Y) doublet sospin singlet 3 in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited	Excited quark $q^* \rightarrow qy$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell y$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1γ 1 or 2 e, μ 1 b 2 e, μ, 1γ 3 e, μ, τ	1j 2j b,2jor1j -	- - Yes -	20.3 20.3 4.7 13.0 20.3	q* mass 3.5 TeV q q* mass 4.09 TeV 0 b* mass 870 GeV 0 c* mass 2.2 TeV 0 r* mass 1.6 TeV 0	mly u^* and d^* , $\Lambda = m(q^*)$ mly u^* and d^* , $\Lambda = m(q^*)$ eff-handed coupling $\Lambda = 2.2 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ 1 e, μ -	2j - 1 b -	Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	ar mass 960 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 551 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV	$m(W_R) = 2.4$ TeV, no mixing \mathcal{W} production, BR $(H_L^{\pm\pm} \rightarrow \ell \ell) = 1$ \mathcal{W} production, BR $(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $h_{non-res} = 0.2$ \mathcal{W} production, $ q = 5e$ \mathcal{W} production, $ g = 1g_D$, spin 1/2	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary
	√s = 7 TeV	√s = 8 TeV			-	10 ⁻¹ 1 10		

*Only a selection of the available mass limits on new states or phenomena is shown.

backup

Run2とそれ以降に向けて: perspective ○ Cross-section

√s=13,14TeVの新しい点、Differential cross-section、light stop search

Top mass CMS-PAS-FTR-13-017

様々な手法で質量測定

Standard, Endpoint, L_{xy}, J/ ψ method, ...

44

ATLASとCMSの良い解析手法を採用

Full NLO tools

\bigcirc	新物理 (F	\bar{c}, \bar{u}			
	$\mathcal{B}(t \to Zq)$	$19.5{\rm fb}^{-1}$ @ 8 TeV	$300{\rm fb}^{-1}$ @ 14 TeV	$3000 \text{fb}^{-1} @ 14 \text{TeV}$	\overline{t} ℓ^+
	Exp. bkg. yield	3.2	26.8	268	$Z^0 \qquad \ell^-$
	Expected limit	< 0.10%	< 0.027%	< 0.010%	SM:10 ⁻¹² ~10 ⁻¹⁷
	1σ range	0.06 - 0.13%	0.018 - 0.038%	0.007 - 0.014%	
	2σ range	0.05 - 0.20%	0.013 - 0.051%	0.005 - 0.020%	B2IAI: <10-4

PDF: Parton Distribution Function

Top quark production

 \bigcirc Top quark pair production via QCD

 $\sigma_{t\bar{t}} = 177.3^{+10.1}_{-10.8} \text{ pb}$ (7TeV) $\sigma_{t\bar{t}} = 252.9^{+13.3}_{-14.5} \text{ pb}$ (8TeV) @NNLO+NNLL (mt=172.5GeV) top++ 2.0

 \rightarrow ~6.4M top quark pairs in LHC Run 1

 \bigcirc Single top production via EW

PRL 110 252004 (2013), arXiv:1303.6254

Phys. Rev. D 83 (2011) 091503, arXiv:1103.2792 [hep-ph]. Phys. Rev. D 82 (2010) 054018, arXiv:1005.4451 [hep-ph]. Phys. Rev. D 81 (2010) 054028, arXiv:1001.5034 [hep-ph].

