Recent results of top quark physics at LHC

Makoto Tomoto Nagoya University

Top quark

Top quark :

- Discovered in 1995 by Tevatron
- The heaviest particle in SM $(M_t = 173.21 \pm 0.51 \pm 0.71 \text{ GeV})$
 - The coupling with Higgs (Yt) ~1.
 - Sensitive to new physics BSM
- Short lifetime around ~10⁻²⁵ s
 - Information on a bare quark
- LHC is the top quark factory experiment
 - ~10 top quark pairs are produced every second in Run 2 LHC
- We can approach not only precision measurement of SM but also the new particle physics phenomenology using top quark as a probe.
 - Test of pQCD at high Q² from top quark production
 - Test of electroweak from top quark decay
 - measurements of Higgs-top Yukawa coupling Y_{t}
 - direct searches of BSM (e.g. stop, gкк, etc.)

LHC

Integrated Luminosity

top quark pair production in p-p collision⁵

- A proton consists of not only u-u-d valence quarks but also a lot of sea quarks and gluons → parton
- The cross section cannot be extracted without the knowledge of the parton density.

$$\sigma_{pp \to t\bar{t}} = \sum_{ij} \int \mathrm{d}x_1 \int \mathrm{d}x_2 f_i(x_1,\mu) f_j(x_2,\mu) \hat{\sigma}_{ij \to t\bar{t}}(s,\alpha_S(\hat{\mu}),Q/\mu)$$

$$P \xrightarrow{f_i i x_1 P} \widehat{\sigma_{ij \to t\bar{t}}} \longrightarrow X$$

$$P \xrightarrow{f_j j x_2 P} \widehat{\sigma_{ij \to t\bar{t}}} \xrightarrow{f_j y} X$$

 $\hat{\sigma}_{ij \rightarrow t\bar{t}} \ \, \text{parton(i)-parton(j) cross-section} \\ \rightarrow \text{perturbative QCD}$

 $f_i(x,\mu)$ Parton distribution function

top quark pair production at LHC

$$\sqrt{\hat{s}} = \sqrt{x_1 x_2} \sqrt{s_{pp}} \qquad x \sim \frac{2m_t}{\sqrt{s}}$$

LHC sensitive to gluonPDF Tevatron sensitive to quark PDF

NNLO+NNLL (mt=173.3, PDF=MSTW2008nnlo68cl)

	x	qq : gg	$\sigma_{ m tt}$ (pb)	±scale	±pdf	
7TeV	0.049	15 : 85	172.0	~3%	3%	
8TeV	0.043	12 : 88	245.8	~3%	~2.5%	
14TeV	0.025	10 : 90	953.6	~3%	2%	
Tevatoron 1.96 TeV	0.18	90 : 10	7.165	~2%	2%	
arXiv:1303.6254						

Top quark decay

Br(t→Wb) ~ 100%

2つのWの崩壊によって、categorizeされる

5%

- dilepton
- lepton+jets 30%
- all jets 45%
- tau+X (charged Higgsに感度)
- rare decay (FCNC decayなど)

Advantage of $7 \text{TeV} \rightarrow 8 \text{TeV} \rightarrow 13 \text{TeV}$

Heavy particles can be produced more at higher \sqrt{s}

13TeV / 8TeV

Higgs (100GeV) production: $x \sim 2$ SUSY (1TeV) production: x 5 - 6

proton-proton collision

Mostly low-Q² QCD events

Higgs : 10¹⁰ lower than inelastic QCD Trigger is important 100kHz at L1、100Hz at HLT

Pileup

```
Event rate = \sigma \times L
```

 σ_{tot} ~100mb L~10³⁴cm⁻²s⁻¹

 \rightarrow Event rate 1GHz

proton crossing rate=40MHz

 \rightarrow several interactions in one p-p crossing

Pileup

A Toroidal Lhc AppratuS

רו

A ttbar candidate event

b-jet id & τ -id

Event selection

\bigcirc dilepton

- 2 isolated leptons
- Z mass veto (for ee, $\mu \mu$)
- ≥2 jets, at least one jet b-tagged

○ single lepton

- 1 isolated lepton
- E^{Tmiss}, M^T(W)でmulti-jet, W+jetsをcontrol
- ≥4 jets, at least one jet b-tagged

\bigcirc all-jets

- No isolated lepton
- ≧6 jets, 2 jets b-tagged
- Small E^{Tmiss} significance, centrality

```
b-tag: typically \varepsilon =70%,
rejection factor=130 (light quark), 5 (c-quark)
```


Kinematic fitting

$$\begin{split} L &= \mathcal{B}(\widetilde{E}_{\mathrm{p},1}, \widetilde{E}_{\mathrm{p},2} | m_W, \Gamma_W) \cdot \mathcal{B}(\widetilde{E}_{\mathrm{lep}}, \widetilde{E}_{\nu} | m_W, \Gamma_W) \\ & \mathcal{B}(\widetilde{E}_{\mathrm{p},1}, \widetilde{E}_{\mathrm{p},2}, \widetilde{E}_{\mathrm{p},3} | m_t, \Gamma_t) \cdot \mathcal{B}(\widetilde{E}_{\mathrm{lep}}, \widetilde{E}_{\nu}, \widetilde{E}_{\mathrm{p},4} | m_t, \Gamma_t) \\ & \mathcal{W}(\hat{E}_x^{\mathrm{miss}} | \widetilde{p}_{x,\nu}) \cdot \mathcal{W}(\hat{E}_y^{\mathrm{miss}} | \widetilde{p}_{y,\nu}) \cdot \mathcal{W}(\hat{E}_{\mathrm{lep}} | \widetilde{E}_{\mathrm{lep}}) \cdot \\ & \prod_{i=1}^4 \mathcal{W}(\hat{E}_{\mathrm{jet},i} | \widetilde{E}_{\mathrm{p},i}) \cdot \prod_{i=1}^4 P(\mathrm{tagged} \mid \mathrm{parton \ flavour}), \end{split}$$

Top quark physics program

Major background for Higgs and searches

Inclusive cross-section

- Select exactly opposite sign 1 e and 1 μ
- Select exactly 1 and 2 b-tagged jets

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$

- $N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{okg}$
- $\varepsilon_{e\mu}$: $e\mu$ selection efficiency
- **8** b : b-tag rate
- : correlation constant Cb

 $\sigma_{t\bar{t}} = 818 \pm 8 \text{ (stat)} \pm 27 \text{ (system)} \pm 19 \text{ (lump)} \pm 12 \text{ (beam) pb}$ Total uncertainty: 4.4%

MC/Data

NNLO+NNLL $= 832 {}^{+20}_{-29}$ (scale) ${}^{+35}_{-35}$ (PDF + $\alpha_{\rm S}$) pb tt

Phys. Lett. B761 (2016) 136

Inclusive cross-section

$\sigma_{\rm tt}$ VS $\sqrt{\rm S}$

Top++2.0 NNLO+NNLL Prediction

	7 TeV	8 TeV	13 TeV	14TeV
$\sigma_{ m tt}$	177 pb	253 pb	832 pb	985 pb
$\Delta \sigma / \sigma$	± 6%	± 6%	± 6%	± 5%

$\sigma_{\rm tt}/\sigma_{\rm Z}$

JHEP1702(2017)117

• Cross-section ratio using tt $\rightarrow e\mu + 2$ bjets

$$R_{t\bar{t}/Z} = \frac{\sigma_{t\bar{t}}}{0.5\left(\sigma_{Z \to ee} + \sigma_{Z \to \mu\mu}\right)}$$

- Correct for common phase space
- Account for correlations of systematic uncertainties.
- Compare to predictions at NNLO+NNLL with 6 different PDF sets

Differential cross-section

arXiv:1612.05220, ATLAS-CONF-2016-040, ATLAS-CONF-2016-100

Resolved (for low pT top) and boosted (high pT top) topologies are used

• Correct for the detector effects ("unfolding"), so that theoretical models can be directly probed. ATLAS Simulation

- Differential cross-section as a function of the kinematic variables, N_{jets}, etc.
- $pT(top) \rightarrow Sensitive to the ISR, FSR$
- y(top), y(tt) \rightarrow Sensitive to the gluon PDF $y_{t\bar{t}} = \frac{1}{2} \ln \left[(E + p_z)/(E p_z) \right] = \frac{1}{2} \ln \left(x_1/x_2 \right)$
- m(tt) \rightarrow Sensitive to the new physics at high-Q²

0.9

-0.3

Differential cross-section : p_T(top)

arXiv:1612.05220, ATLAS-CONF-2016-040, ATLAS-CONF-2016-100

Differential cross-section : y(top)

arXiv:1612.05220, ATLAS-CONF-2016-040, ATLAS-CONF-2016-100

Differential cross-section : pT^{tt}, m^{tt}

arXiv:1612.05220, ATLAS-CONF-2016-040, ATLAS-CONF-2016-100

tt+X cross-section

Eur. Phys. J. C77 (2017) 40

b

modeling of tt+>1b is dominant syst.

ATLAS-CONF-2016-068

Top mass : Standard method

Phys. Lett. B 761 (2016) 350, arXiv:1702.07546, etc.

Top quark mass is measured using the "template fit"

dilepton : 2 leptons, 2 b-jets→m_{lb}

single lepton : lepton, E^{™iss}, 2 b-jets, 2 light-jets→m_{top}^{reco}, mw^{reco}, R_{bq}^{reco}

3D template fit of m_{top}^{reco} , m_W^{reco} , R_{bq} distribution

 \rightarrow extract m_t, JSF, bJSF simultaneously

 $R_{bq}^{\text{reco}} = \frac{p_{\text{T}}^{b_{\text{had}}} + p_{\text{T}}^{b_{\text{lep}}}}{p_{\text{T}}^{W_{\text{jet1}}} + p_{\text{T}}^{W_{\text{jet2}}}}$

all jets : 2 b-jets, 4 light-jets $\rightarrow R_{3/2}=m_{jjj}/m_{jj} \leftarrow Peak at M_t/M_w \sim 2$

Top mass : pole mass from σ_{tt}

28

Top mass : pole mass with ttbar+1 jet

Indirect pole mass measurement from differential cross section Introduced by Eur. Phys. J C73 (2013) 2438, arXiv:1303.6415 The amount of gluon radiation is sensitive to mt

$$\mathcal{R}(m_t^{pole}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1jet}} \frac{d\sigma_{t\bar{t}+1jet}}{d\rho_s} (m_t^{pole}, \rho_s)$$

$$\rho_s = \frac{2m_0}{\sqrt{s_{t\bar{t}j}}} \qquad m_0 = 170 \text{ GeV} \text{ (Aritary of O(m_t))}$$

- \bigcirc Analysis used single lepton final state
- Leptonic W from lepton, ETmiss
- Hadronic W from kinematics reconstruction
- Combination of b-jet-W \rightarrow minimize $m_t^{\text{lep}} m_t^{\text{had}}$
- A jet from radiation satisfies pT>50GeV
- Unfold ρ_s distribution
- top mass determined by χ^2 fit

 $m_t^{\text{pole}} = 173.7 \pm 1.5 \text{(stat.)} \pm 1.4 \text{(syst.)} \stackrel{+1.0}{_{-0.5}} \text{(theo.)} \text{ GeV}$

29

arXiv:1507.01769

Top mass measurement summary

Top mass : Other methods

O Kinematic Endpoint Eur.Phys.J.C(2013)73:2494

 $m_t = 173.9 \pm 0.9(\text{stat})^{+1.7}_{-2.1}(\text{syst}) \text{ GeV}$

○ t-channel single top ATLAS-CONF-2014-055 Template fit of lepton-b-jet mass

 $m_t = 172.2 \pm 0.7 (\text{stat}) \pm 2.0 (\text{syst}) \text{ GeV}$

CMS Simulation, \s=8 TeV 50.76 🗕 eu-channel 0.74 µ+jets-channel e+jets-channel 0.72 0.7 0.68 0.66 168 170 172 174 176 178 180 182 vs = 8TeV data Best fit: m_{ine} = 172.2 ± 0.7 (stat.) GeV Events / 1000 Single-top t-channel signal tť signal Background ATLAS Preliminary Ldt = 20.3 fb 500 120 100 140

3

5.5

Standard methodと異なるSystematics

m(lb) [GeV]

Top quark mass : prospects

Charge asymmetry

Charge Asymmetry

Phys. Rev. D 94, 032006

$$A_{\mathrm{C}}^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

$$A_{\rm C}^{\ell\ell} = \frac{N(\Delta|\eta| > 0) - N(\Delta|\eta| < 0)}{N(\Delta|\eta| > 0) + N(\Delta|\eta| < 0)}$$

$$\Delta |y| = |y_t| - |y_{\bar{t}}|$$

$$\Delta |\eta| = |\eta_{\ell^+}| - |\eta_{\ell^-}|$$

Spin correlation

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_1d\cos\theta_2} = \frac{1}{4}(1+\alpha_1P_1\cos\theta_1+\alpha_2P_2\cos\theta_2-C\cos\theta_1\cos\theta_2)$

SM : unpolarized $\rightarrow \alpha P \cos \theta$ are negligible

Spins of t and tbar are correlated ightarrow can be measured by $\Delta \phi_{\parallel}$

 $F_0 = 0.709 \pm 0.019$ $F_L = 0.299 \pm 0.015$ $F_R = -0.008 \pm 0.014$

Wtb anomalous couplings

arXiv:1612.02577

• Constraint on Wtb anomalous couplings from measurements of F_0 , F_L , and F_R .

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} (V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \overline{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_{W}} (g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R}) t W_{\mu}^{-} + \text{h.c.}$$

37

FCNC

Eur. Phys. J. C (2016) 76:12

New physics searches with top quark

• Resonance search (Z', gкк, Gкк, etc.)

four top quarks : small in SM, enhanced in BSM (CI, UED, etc)

39

2.5

g_{кк} mass [TeV]

Top quark as a probe of SUSY

- In case $M_{\tilde{t}} M_{\tilde{\chi}_1^0} \sim M_t$, stop pair production is only detectable with the precision measurement in top quark pair production cross section.
 - ttbar spin analysis correlations constrained $M_{\tilde{t}} < 190~{\rm GeV}$
 - The analysis with boosted ttbar+ISR jet production constrained $230 \text{ GeV} < M_{\tilde{t}} < 380 \text{ GeV}$
- Same strategy can be made for gluino to ttbar decay, in case $M_{\tilde{g}}-M_{\tilde{\chi}_1^0}\sim 2M_t$
 - precision measurement in $t\bar{t}t\bar{t}$ signature

40

Summary

- LHC is the top quark factory experiment
 - ~10 top quark pairs are produced every second in Run 2 LHC
- We are approaching not only precision measurement of SM but also the new particle physics phenomenology using top quark as a probe.
 - Test of pQCD at high Q² from top quark production
 - Test of electroweak from top quark decay
 - Measurements of Higgs-top Yukawa coupling Y_t
 - Direct searches of BSM (e.g. stop, gкк, etc.)
 - Rare decay and anomalous coupling searches

backup

Anti-kt algorithm

Impact on gluon PDF

