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➢ The 𝑔 − 2 𝜇 anomaly from the average of two experiments [1][2] 

has 4.2𝜎 discrepancy from the Standard Model prediction [3].

The contribution of New Physics is expected.

➢ A novel method measurement for the 𝑔 − 2 𝜇 and the EDM𝜇

using muon acceleration is under development at J-PARC [4].

Introduction

𝑔 − 2 𝜇: the muon anomalous magnetic moment

EDM𝜇: the muon electric dipole moment

Schematic view of the experiment at J-PARC [4].The values of 𝑎𝜇 = 𝑔 − 2 𝜇/2 [2].



➢ The disk-loaded structures (DLS) take charge acceleration 

from 40 MeV (𝛽 = 0.7) to 212 MeV (𝛽 = 0.94) in the high-𝛽 section.

➢ The requirements for the DLS section

‐ An accelerating gradient of 20 MV/m.
(to acquire 172 MeV energy gain in about 10 m section)

‐ A low normalized transverse emittance of 1.5𝝅 mm mrad or less

& a small momentum spread of 0.1 % or less.
(for spiral injection & storage in the compact and weak focusing magnet)

※ In this poster, I’ll consider a part of the DLS (40 MeV (𝛽 = 0.7) to 80 MeV (𝜷 ~ 0.8)).

Muon LINAC Overview

1296 MHz
E = 40 MeV 212 MeV

10 m

Schematic configuration of the muon LINAC [4].

𝜷 = 0.7 0.94



➢ The length of each cell in the DLS (𝐷) is determined as

𝐷 = 𝛽𝜆/3
to synchronize the beam velocity 𝜷 & the phase velocity of RF.

➢ 𝛽 is calculated in terms of the energy gain 

assuming a constant accelerating gradient (20 MV/m) as

Energy Gain = 20 MV/m × cos −10 deg × 𝐷′

➢ This design requires an input RF power 

of 80 MW for an accelerating gradient 

of 20 MV/m.

➢ The first design (CI type) was estimated 

to meet the requirements [5], 

however, we need more consideration about 

the gradient and the phase slip.

➢ I’ll show

‐ the calculation method of the RF properties of the traveling wave in the DLS.

‐ the status of the cell designs for the quasi-CG type muon DLS.

The First Design

𝜆: the wavelength of a 1296 MHz wave

※ 2𝜋/3 mode

−10 deg: the beam-synchronous phase yield 

a sufficient longitudinal acceptance

𝐷′: the length of the adjacent cell on the upstream

Schematic diagram of the cross-section of 2 cells.
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➢ The traveling wave is obtained by the superposition of the standing waves 

in two different boundary conditions:

Neuman boundaries (𝐸𝑇 = 0) & Dirichlet boundaries (𝐻𝑇 = 0) 

calculated by using Autofish solver in SUPERFISH [6].

➢ In 2𝜋/3 mode, the solver calculates the same boundaries for every 1.5 cells. 

➢ Other parameters are calculated as

‐ Quality factor:

‐ Shunt impedance per unit length:

‐ Group velocity at the left side [7][8]:

Calculation of Traveling Wave
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[definitions]

𝑓: frequency = 1296 MHz, 

𝑈: the stored energy in 1.5 cells, 𝑃: the power dissipation in 1.5 cells, 

𝐸0
′ : the accelerating gradient averaged over 1.5 cells,

𝐸𝑟 , 𝐻𝜙: the electric/magnetic fields of each boundaries normalized to 𝑈 = 1 Joule at the left side of the cell.

Standing-wave fields in half of 1.5 cells.
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Four kinds of structures were designed under the following conditions.

➢ The iris aperture (2𝑎) of the first cell is fixed to 40 mm.

➢ 2𝑎 of the last cell (2𝑎last) is set to 37 mm, 38 mm, 39 mm, or 40 mm (CI type).

➢ 2𝑎 of the other cells is determined as the function of the cell number (𝑛):

The average & normalized accelerating 

gradient per cell (𝐸0) is given as

where Δ𝑃 𝑛 is the power dissipation per cell:

The structure with 𝟐𝒂𝐥𝐚𝐬𝐭 = 38 mm (green) has the most uniform gradient.

→ evaluate the phase slip & 𝐸0 in detail as the quasi-CG type.

Cell Design for CG Type DLS

2𝑎 𝑛 mm = 40 +
2𝑎last − 40

32
× 𝑛

𝐸0 𝑛 = Δ𝑃 𝑛 𝑍 𝑛 /𝐷 𝑛

Δ𝑃 𝑛 = 𝑃in𝑒
−2 σ𝑖=1

𝑛−1 𝛼 𝑖 𝐷 𝑖 1 − 𝑒−2𝛼 𝑛 𝐷 𝑛

𝑃in: the input RF power = 1 MW

𝛼: the field attenuation factor = 𝜋𝑓/𝑣𝑔 𝑛 𝑄 𝑛



➢ The phase and the gradient are calculated in General Particle Tracer [9].

➢ One muon with an initial kinetic energy 

of 42.7 MeV is traced.

➢ The phase slip at the middle of a cavity 

of each cell is calculated as

➢ The accelerating gradient is calculated as

➢ The input RF power of 72 MW is chosen 

to be 𝜙quasi−CG 32 ≃ −10 deg.

➢ The quasi-CG type has a smaller phase slip 

and a more uniform accelerating gradient 

than those of the CI type.

Evaluation of Phase Slip & Gradient 

𝜙 𝑛 − −10 = 360𝑓𝑡beam 𝑛 − 120𝑛

𝐸0 𝑛 cos𝜙 =
1

𝐷 𝑛
න
𝐷 𝑛

𝐸𝑧 𝑧 𝑑𝑧

𝑡beam 𝑛 : the arrival time of the muon 

to the end of the n-th cell

𝐸𝑧 𝑧 : the longitudinal electric field



Summary

➢ We got the better solution with 

the quasi-CG type DLS: 
・the smaller phase split.

・the more uniform

accelerating gradient.

with the same input RF power.

➢ The accelerating gradient of about 

19 MV/m is lower than 20 MV/m.

Prospect 

To get solutions with less energy deviation from the design, 

the more rigorous simulations will be needed.

Summary and Prospect
Summary of simulated parameters of the quasi-CG type
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