

Basic Design Study for Disk-Loaded Structure in Muon LINAC

Kazumichi Sumi (Nagoya University)

Coauthors:

T. Iijima^{A,B,C}, K. Inami^A, H. Ego^C, M. Otani^{C,D}, Y. Kondo^{E,F}, N. Saito^C, Y. Sue^A, Y. Takeuchi^G, Y. Nakazawa^F, T. Mibe^C, H. Yasuda^H, M. Yoshida^C, M. Yotsuzuka^A ^ANagoya Univ., ^BKMI, ^CKEK, ^DJ-PARC, ^EJAEA, ^FIbaraki Univ., ^GKyushu Univ., ^HUniv. of Tokyo

Introduction

- ➤ The (g 2)_µ anomaly from the average of two experiments [1][2] has 4.2σ discrepancy from the Standard Model prediction [3]. The contribution of New Physics is expected.
- > A novel method measurement for the $(g 2)_{\mu}$ and the EDM μ using muon acceleration is under development at J-PARC [4].

 $(g-2)_{\mu}$: the muon anomalous magnetic moment EDM_{μ}: the muon electric dipole moment

Muon LINAC Overview

→ The disk-loaded structures (DLS) take charge acceleration from 40 MeV ($\beta = 0.7$) to 212 MeV ($\beta = 0.94$) in the high- β section.

Schematic configuration of the muon LINAC [4].

- The requirements for the DLS section
 - An accelerating gradient of 20 MV/m.

(to acquire 172 MeV energy gain in about 10 m section)

- <u>A low normalized transverse emittance of 1.5π mm mrad or less</u> & <u>a small momentum spread of 0.1 % or less</u>.

(for spiral injection & storage in the compact and weak focusing magnet)

in this poster, I'll consider a part of the DLS (40 MeV (β = 0.7) to 80 MeV (β ~ 0.8)).

The First Design

> The length of each cell in the DLS (*D*) is determined as $D = \beta \lambda/3$

 λ : the wavelength of a 1296 MHz wave $\approx 2\pi/3$ mode

to synchronize the beam velocity β & the phase velocity of RF.

- > β is calculated in terms of the energy gain <u>assuming a constant accelerating gradient (20 MV/m)</u> as Energy Gain = 20 MV/m × cos(-10 deg) × D'
- This design requires an input RF power of 80 MW for an accelerating gradient of 20 MV/m.
- The first design (CI type) was estimated to meet the requirements [5], however, we need more consideration about the gradient and the phase slip.

Schematic diagram of the cross-section of 2 cells.

- \succ I'll show
 - the calculation method of the RF properties of the traveling wave in the DLS.
 - the status of the cell designs for the **<u>quasi-CG type muon DLS</u>**.

- -10 deg: the beam-synchronous phase yield a sufficient longitudinal acceptance
- D': the length of the adjacent cell on the upstream

Calculation of Traveling Wave

- The traveling wave is obtained by the superposition of the standing waves in two different boundary conditions:
 Neuman boundaries (E_T = 0) & Dirichlet boundaries (H_T = 0) calculated by using Autofish solver in SUPERFISH [6].
- > In $2\pi/3$ mode, the solver calculates the same boundaries for every 1.5 cells.
- ➢ Other parameters are calculated as

 Quality factor:
 Q = $\frac{2\pi f U}{P}$ Shunt impedance per unit length:
 Z = $\frac{|E'_0|^2}{P/1.5D}$ Group velocity at the left side [7][8]:
 v_g = $\frac{\frac{1}{2} \int_0^b E_{r,\text{Dirichret}}(r) H_{\phi,\text{Neuman}}(r) 2\pi r dr}{2 \text{ Joules}/1.5D}$

[definitions]

f: frequency = 1296 MHz,

U: the stored energy in 1.5 cells, P: the power dissipation in 1.5 cells,

 $|E'_0|$: the accelerating gradient averaged over 1.5 cells,

 E_r , H_{ϕ} : the electric/magnetic fields of each boundaries normalized to U = 1 Joule at the left side of the cell.

Standing-wave fields in half of 1.5 cells.

Cell Design for CG Type DLS

Four kinds of structures were designed under the following conditions.

- > The iris aperture (2*a*) of the first cell is fixed to 40 mm.
- > 2a of the last cell ($2a_{last}$) is set to 37 mm, 38 mm, 39 mm, or 40 mm (CI type).
- > 2*a* of the other cells is determined as the function of the cell number (n):

$$2a(n) \text{ [mm]} = 40 + \frac{2a_{\text{last}} - 40}{32} \times n$$

The average & normalized accelerating gradient per cell (E_0) is given as

$$E_0(n) = \sqrt{\Delta P(n)Z(n)/D(n)}$$

where $\Delta P(n)$ is the power dissipation per cell: $\Delta P(n) = P_{\text{in}}e^{-2\sum_{i=1}^{n-1}\alpha(i)D(i)} (1 - e^{-2\alpha(n)D(n)})$ $P_{\text{in}}: \text{ the input RF power} = 1 \text{ MW}$ $\alpha: \text{ the field attenuation factor} = \pi f/v_q(n)Q(n)$

The structure with $2a_{\text{last}} = 38 \text{ mm}$ (green) has the most uniform gradient. \rightarrow evaluate the phase slip & E_0 in detail as the quasi-CG type.

Evaluation of Phase Slip & Gradient

- ➤ The phase and the gradient are calculated in General Particle Tracer [9].
- One muon with an initial kinetic energy of 42.7 MeV is traced.
- The phase slip at the middle of a cavity of each cell is calculated as $\phi(n) - (-10) = 360 f t_{\text{beam}}(n) - 120n$
- \succ The accelerating gradient is calculated as

$$E_0(n)\cos\phi = \frac{1}{D(n)} \int_{D(n)} E_z(z) dz$$

 $t_{\text{beam}}(n)$: the arrival time of the muon to the end of the *n*-th cell $E_z(z)$: the longitudinal electric field

- ➤ The input RF power of 72 MW is chosen to be $\phi_{quasi-CG}(32) \simeq -10$ deg.
- The quasi-CG type has a smaller phase slip and a more uniform accelerating gradient than those of the CI type.

Summary and Prospect

Summary

- ➢ We got the better solution with the quasi-CG type DLS:
 - the smaller phase split.
 - the **more uniform accelerating gradient**. with the **same input RF power**.
- The accelerating gradient of about 19 MV/m is lower than 20 MV/m.

Summary of simulated parameters of the quasi-CG type

Input beam energy 42.7 MeV ($\beta = 0.702$) Output beam energy 78.5 MeV ($\beta = 0.819$) Operating frequency (f)1296 MHz Accelerating mode TM01- $2\pi/3$ Synchronous phase $-10 \deg$ Number of regular cells 32 Input RF power (P_{in}) 72 MW Accelerating gradient (E_0) ~19 MV/m Cell length (D)54–63 mm Disk thickness $5\,\mathrm{mm}$ It is aperture (2a(n))38–40 mm Cylinder diameter (2b(n))179.5-180.3 mm Quality factor (Q(n))17 000-19 000 Shunt impedance (Z(n)) $28-36 M\Omega/m$ Group velocity/speed of light 0.82-0.96 % Filling time $0.69 \,\mu s$ Field attenuation factor ($\alpha(n)$) 0.083-0.086

Prospect

To get solutions with less energy deviation from the design, the more rigorous simulations will be needed.

Acknowledgements

This work is supported by JSPS KAKENHI Grant Numbers JP18H03707, JP18H05226, and JP20H05625.

References

- [1] Phys. Rev. D 73, 072003 (2006)
- [2] Phys. Rev. Lett. 126, 141801 (2021)
- [3] Phys. Rep. 887, pp. 1-166 (2020)
- [4] PTEP 2019, 053C02 (2019)
- [5] J. Phys.: Conf. Ser. 874, 012054 (2017)
- [6] LA-UR-96-1834 (1996)
- [7] http://www.yamamo10.jp/yamamoto/study/accelerator/GPT/TW_structure/
- [8] IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3 (1979)
- [9] http://www.pulsar.nl/gpt/