Belle実験における $B \rightarrow D^0 \overline{D}^* K$ 崩壊を用いた X(3872) ラインシェイプ測定結果 (arXiv:2302.02127 [hep-ex]、Phys. Rev. D 投稿済み)

名大理A, 原子力機構B, 名大KMIC, KEK素核研D <u>**平田光A,B,</u> 飯嶋徹A,C,D, 加藤悠司C, 谷田聖B 他 Belle Collaboration**</u> 日本物理学会 2023年春季大会 2023年3月22日 (22aV1-5)

X(3872)

- X(3872) is charmonium-like exotic state observed in $B \rightarrow J/\psi \pi^+ \pi^- K$ decays at Belle.
 - Mass is inconsistent with predictions about standard charmonia from quark model.

. Isospin I = 1 for $J/\psi\rho(\rightarrow \pi^+\pi^-)$ decay mode.

 \rightarrow This state includes $u\overline{u}$ and $d\overline{d}$ components.

- Property:
 - Mass 3871.65 ± 0.06 MeV/c²
 - Width 1.19 ± 0.21 MeV
 - Quantum number $J^{PC} = 1^{++}$

Branching fraction observed to date

 $D^0\overline{D}^{*0}$ $(37 \pm 9)\%$ $J/\psi\rho \ (\rightarrow \pi^+\pi^-) \ (3.8 \pm 1.2)\%$ X(3872) $(4.3 \pm 2.1)\%$ $J/\psi\omega$ $\chi_{c1}\pi^0$ $(3.4 \pm 1.6)\%$ branching fraction* $\psi(2S)\gamma$ $(4.5 \pm 2.0)\%$ $J/\psi\gamma$ $(0.8 \pm 0.4)\%$ Not seen 約46%

X(3872)

- X(3872) is charmonium-like exotic state observed in $B \rightarrow J/\psi \pi^+ \pi^- K$ decays at Belle.
 - Mass is inconsistent with predictions about standard charmonia from quark model.
 - . Isospin I = 1 for $J/\psi\rho(\rightarrow \pi^+\pi^-)$ decay mode.
 - \rightarrow This state includes $u\overline{u}$ and $d\overline{d}$ components.

(37 ± 9)% \rightarrow It coincides with $D^0\overline{D}^{*0}$ threshold. $(3871.69 \pm 0.10 \text{ MeV/c}^2)$ Quantum number $J^{PC} = 1^{++}$, \rightarrow It couples with $D\overline{D}^*$ channel in S-wave. $\pm 2.0\%$ Coupling with $D\overline{D}^*$ state is indicated.

Structure and Lineshape Analysis

- Determining $X(3872) \rightarrow D\overline{D}^*$ coupling strength is important to discuss X(3872) structure.
- It can be evaluated by lineshape measurement with
 - model to account for coupled channel effects (Flatte model).
 - $X(3872) \rightarrow D^0 \overline{D}^{*0}$ decays corresponding to $D\overline{D}^*$ channel.

- $D\overline{D}^*$ coupling strength
- Loosely bound or virtual states

$$D \overline{D}*$$

- Wider lineshape because of phase space and threshold effect
 - **Better mass resolution** thanks to small Q-value (~100 keV, ~1/20 of $J/\psi\pi^+\pi^-$)
 - Belle experiment is suitable • because $D^{*0} \rightarrow D^0 \gamma$, $D^0 \pi^0$ can be reconstructed.

We aim to measure $X(3872) \rightarrow D^0 \overline{D}^{*0}$ signal lineshape using Belle full data.

Belle Experiment

Data was collected from 1999 to 2010.

 $1.8 \times 10^5 B \rightarrow (X(3872) \rightarrow D^0 \overline{D}^{*0})K$ decays.

Belle Experiment

Belle detector (8.0 GeV) (3.5 GeV) Cavities Positron target

6 / 13

General-purpose detector: Belle

 π^+ , K^+ , p, e^- , μ^- , γ can be detected in wide momentum region. \rightarrow Key of D^{*0} reconstruction

Event Reconstruction, Selection and 7 / 13 **Detector Response** Reported in JPS 2021 annual meeting (15aU1-1)

- Compared with previous study using $X(3872) \rightarrow B_{0}^{\mathbb{N}^{0}} \overline{B}_{70}^{\mathbb{N}^{0}}$ decays $a_{0}^{\mathbb{N}^{0}}$ Belle, PRD 81, @31103 (2010)
 - Signal efficiency 3.9 by a factor of 1.9.
 - Mass-dependen signal efficiency and mass resolution are convolved.

3.885 3.88 3.875 3.87 More precise lineshape measurement is realized.

 D^0 candidates are reconstructed in six decay modes with higher reconstruction efficiency and purity:

 $K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{-}\pi^{+}, K^{0}_{S}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{0}, K^{-}K^{+}$

Flatte Model and Fit Method

- Breit-Wigner formula expanded to account for coupled channel effects
- Definition with respect to energy difference from $D^0\overline{D}^{*0}$ threshold E:

$$f(E) = \frac{g(k_D^0 D^{*0})}{|E - E_f| + \frac{i}{2} [\Gamma_0 + \Gamma_{J/\psi\rho}(E) + \Gamma_{J/\psi\omega}(E)] + g(k_D^0 \overline{D}^{*0} + k_D^{+} D^{*-})]|^2}$$
Mass difference from
 $D^0 \overline{D}^{*0}$ threshold Partial widths for radiative, $J/\psi\rho$, and $J/\psi\omega$ decays Coupling to $D\overline{D}^*$ channel
 $\cdots g$: Coupling constant

C. Hanhart et. al., PRD **76** 034007 (2007)

 $ok_{-o=*o}$

to *DD** channel

... k_a : Momentum for channel a

 $\begin{pmatrix} k_{D^0\overline{D}^{*0}} = \sqrt{2\mu E} \\ \mu \text{ is reduced mass} \end{pmatrix}$

Flatte Model and Fit Method

- Breit-Wigner formula expanded to account for coupled channel effects
- Definition with respect to energy difference from $D^0\overline{D}^{*0}$ threshold E:

Requirements from definition :

- (Area under lineshape \propto Branching fraction)
- $-\Gamma_{J/\psi\omega}$ is fixed by world-average $\mathscr{B}(X(3872) \rightarrow J/\psi\omega)$.
- g is softly constrained by $\mathscr{B}(X(3872) \rightarrow D^0 \overline{D}^{*0})$ calculated from signal yield obtained by the fit.

C. Hanhart et. al., PRD **76** 034007 (2007)

 $gk_{D^0\overline{D}^{*0}}$

Coupling to *DD** channel radiative, $J/\psi\rho$, and $J/\psi\omega$ decays ... g : Coupling constant

To obtain stable fit results, E_f , Γ_0 , $\Gamma_{J/\psi\rho}$ are fixed based on previous study using $J/\psi \pi^+\pi^-$ decays at LHCb experiment

PRD **102**, 092005 (2020)

 \rightarrow Only g is floated

Fit Bias

• Lineshape converges to a fixed form for $g \gg 0$. \rightarrow For this small sample size, g is likely to be underestimated.

(For example, failure in determining maximum likelihood point and upper statistical uncertainty)

Fit to Data Using Flatte Model

 $B^+ \to X(3872)K^+, D^{*0} \to D^0 \pi^0$ Real data Total Yield ratio is fixed Signal by MC expectation Signal reconstructed wrongly Background 25 Fitted g^{95} so 0.29 + 2.93.885 3.89 3.895 (stat.). $M(D^0\overline{D}^{*0})$ (GeV/c²) $f \rightarrow It$ is in the region where $_{10} \models B^0 \to X(3\$72)K^0, D^{*0} \to D^0\pi^0$ the fit bias cannot be evaluated. 3.9 3.95 3.9 Lower limit including systematics uncertainty g > 0.094 (90% credibility) 10 5 3.89 3.895 3.98M(D⁰D^{*0}) (G $/c^2$) 16 5 3.885 10 15 18 12 Vb^2 10 . 8 16 ப **14** 15 \cap

11/13

Discussion

g > 0.094 (90% credibility)

- Partial width for $D^0 \overline{D}^{*0}$ channel is > O(1) MeV. (Apparent width is a few MeV.) \rightarrow Impact of $D\overline{D}^*$ state on X(3872) is large.
- According to Fermi's golden rule, the limit corresponds to limit of matrix element $|\mathcal{M}| > 5.9$ GeV

12/13

Summary

- X(3872) lineshape analysis is important to reveal its structure.
- Using Belle full data, we performed lineshape analysis with ullet" $X(3872) \rightarrow D^0 \overline{D}^{*0}$ decays" × "model including coupled channel effects".
 - Coupling strength to $D\overline{D}^*$ channel is obtained as g > 0.094 (90% credibility).
 - The impact of $D\overline{D}^*$ state is large, and it corresponds to matrix element $|\mathcal{M}| > 5.9$ GeV.

- Prospect; <u>Uncertainty due to statistics</u> is dominant in this analysis. ullet···· Statistics uncertainty and fit bias
- \rightarrow It can be reduced using datas to be acquired at Belle II (x 50 that of Belle by ~2035). Sensitivity is improved more by analyzing $J/\psi \pi^+ \pi^-$ decays sample simultaneously.

arXiv:2302.02127 [hep-ex], Submitted to Phys. Rev. D

