

Low-power test of bridge coupler in disk-and-washer structure for muon acceleration

Ayaka Kondo¹, T. Iijima¹, K. Sumi¹, Y. Takeuchi², E. Cicek³, H. Ego³, M. Otani³, Y. Nakazawa³, K. Futatsukawa³, T. Mibe³, M. Yoshida³, Y. Kondo⁴, T. Morishita⁴, Y. Iwashita⁵

¹Nagoya Univ., ²Shanghai Jiao Tong Univ., ³KEK, ⁴JAEA, ⁵Kyoto Univ.

Abstract A muon linear accelerator is under development at J-PARC for precise measurement of the muon anomalous magnetic moment g-2 and electric dipole moment (EDM). A disk-and-washer (DAW) structure is employed to accelerate muons from 30% of the speed of light (kinetic energy = 4 MeV) to 70% (40 MeV) at 1296 MHz. The muon DAW consists of tanks accelerating the muons and bridge couplers that couple the tanks and focus the beam using an internal quadrupole doublet. A bridge-coupler prototype is currently being fabricated and will be tested. This paper presents the design and performance evaluation of the bridge coupler prototype.

Muon g - 2/EDM

Anomalous Magnetic Moment (g-2)

Discrepancy between theoretical and experimental values

Sign of New Physics?

Electric Dipole Moment (EDM)

A physical quantity that breaks time-reversal symmetry

Observation = New Physics

Measurement with muon linac @J-PARC

- Precise measurement of muon g-2/EDM by novel method. \rightarrow Independent verification
- Novel method uses a low-emittance beam by muon cooling and reaccelerating.
- The muon linear accelerator (linac) consists of four stages suitable for $\beta(=v/c)$ and accelerates muons from $\beta=0.01$ to 0.94.
- In 2024, the world's first cooled muon acceleration (up to 100 keV) was achieved (S. Aritome et al., *arXiv:2410.11367*, 2024).
- Furthermore, muon acceleration is an innovative technology with potential applications in muography and muon colliders in the future.

Disk-and-Washer (DAW) CCL

Bridge couple

- Third stage ($\beta = 0.3-0.7$) of muon linac.
- A type of Coupled-Cavity Linacs (CCL)
- Bi-periodic structures
 - The frequencies of the accelerating mode excited in the accelerating cells and the coupling mode excited in the coupling cells must be matched.
- High power efficiency for middle β
- High electric field stability
- It consists of accelerating tanks and bridge couplers that couple the tanks and focus the beam.

 Initial part of the DAW

Bridge coupler development

- In a previous study, the tank prototype had completed the RF test and defined the basic geometry of the bridge coupler (Y. Takeuchi, *Ph.D. dissertation*, 2023).
 - Geometry satisfying beam dynamics and RF constraints.
- Few examples exist, so the bridge coupler needs to establish the fundamentals.
- We designed in detail (Fine-tuning, Ports installation) and fabricated a prototype.

Requirement

Due to cooling-water adjustability

- 1. Accelerating mode frequency: $1296 \pm 0.1 + 1 \, \text{MHz}$
- 2. Coupling mode frequency: 1296 ± 4 MHz Due to tuner adjustability
- 3. Field flatness of E_z/E_{ref} : $100 \pm 1\%$ Due to beam dynamics

Design

Simulation results of the final design

using CST Studio Suite (electromagnetic field simulation software)

- 1. Accelerating mode frequency: 1296.04 MHz
- 2. Coupling mode frequency: 1295.96 MHz

3. Field flatness of E_7/E_{ref} : 99.5%

Achieved a design that satisfies the requirements.

Key parameters (selective to requirements)

Inner projection radius

Acceleration mode frequency: -7 MHz/mm Requirement accuracy: < 0.1 mm

Outer projection length

Coupling mode frequency: -11 MHz/mm

Requirement accuracy: < 0.4 mm

The axial position of the inner conductor

Electric field flatness: 33%/mm

Requirement accuracy: < 0.03 mm

Fabrication and low-power test

Fabrication accuracy (absolute differences between design and measured values)

Inner projection radius: $<(7.7\pm0.05)\times10^{-2}$ mm Satisfy requirements accuracy Outer projection length: $(5\pm0.5)\times10^{-4}$ mm The axial position of the inner conductor: in progress

RF characteristics

The evaluation was done with end plates, 2 antennas and a vector network analyzer (VNA).

Accelerating mode frequency

Simulation(w/ end plates): 1296.3 MHz Measured: 1295.4 ± 0.3 MHz

Q-value

Temperature correction

Temperature correction

Temperature correction

Temperature correction

Temperature correction

Q-value

Simulation (w/ end plates): 8000

Measured: 3493Q_L(loaded Q) \rightarrow Q₀(unloaded Q)

MHz
Az
Antenna
VNA S21 Measurement

Prototype (stainless steel)

Outlook

- The frequency was consistent with the simulation within 1 MHz.
- The remaining discrepancies are currently under investigation.
- Further studies, such as bead-pull measurements combining the tank and bridge coupler prototypes, are also being considered.