



# Tau Physics at CDF

Alexei Safonov
University of California, Davis
CDF-II Collaboration

### **Outline**

- Tau Physics at Hadron Colliders
- Tau Detection at CDF:
  - Reconstruction
  - Tau Triggers
  - Identification
- Backgrounds
- CDF-II First Physics Results:
  - Electroweak
  - Higgs and Exotics Searches
- Summary

## Fermilab Tevatron



- Major Upgrade for Run II:
  - Beam E=980 GeV
  - Collisions every 396ns
  - Instantaneous Lumi ~ (few x 10<sup>32</sup>) cm<sup>-2</sup>s<sup>-1</sup>
  - 2-3 interactions per bunch crossing
  - Expected Integrated L
     ~ 4-8 fb<sup>-1</sup> (by 2009)

### **CDF** Detector

- Many Improvements compared to Run I:
  - New DAQ
  - New Track Trigger
  - New Silicon  $|\eta|$ <2
  - Improved b-tagging
  - New Drift Chamber
  - New PlugCalorimeter
  - Increased acceptance
  - Upgrade MuonDetectors



## Data and Luminosity



#### • CDF:

- about 500 pb-1 on tape
  - over 400pb-1 of high quality data (Winter 2005 analyses)
- Average Data Taking Efficiency is about 80%
- Record Instantaneous Luminosity 1.13 x 10<sup>32</sup>

## **CDF Detector and Taus**

#### Tracks:

- Central Tracker + Silicon Vertex Detector
- Good tracking (efficiency in high 90's,  $|\eta| \le 1$ )
- Calorimeter clusters:
  - Segmentation ( $\Delta \eta = 0.1$ ) x ( $\Delta \phi = 15^0$ )
    - Compare to typical tau size of  $\sim 5-10^{\circ}$
    - Poor resolution for hadronic part

#### Pions:

- ShowerMax (CES) Detector
  - strip/wire chamber inside EM calorimeter
  - Spatial resolution ~few mm
- Reconstruct  $\pi^0$ s as 2D matches in CES
- Assign energy from EM calorimeter



#### Tau Reconstruction

- CDF Tau Object = tracks +  $\pi^0$ s + calorimeter towers
- Tau Candidate Reconstruction:
  - Start with a seed calorimeter tower
     E<sub>T</sub>>6 GeV (being lowered to 4 GeV)
  - Clustering algorithm combines nearby towers with E<sub>T</sub>>1 GeV
  - Only clusters with 6 or less towers retained
  - A seed track with P<sub>T</sub>>5 GeV pointing to the cluster
  - Reconstructed tracks and p0's are added

Reconstruction Efficiency:

~70% at 15 GeV

~85% at 25 GeV

~95% at 40 GeV

### Tau ID

• Tracks and  $\pi^0$ s within the signal cone (10°) for soft taus) are associated with the tau:

- Momentum: 
$$\vec{p}^{\tau} = \sum \vec{p}^{trk} + \sum \vec{p}^{\tau^0}$$
- Energy =  $E^{\tau} = \sum E^{trk} + \sum E^{\tau^0}$ 

$$- \text{Energy} = E^{\tau} = \sum E^{trk} + \sum E^{\pi^{\circ}}$$

- Invariant mass of 4-vector  $(E, \vec{p})$
- Tracks and  $\pi^0$ s between 10-30° counted in isolation:

$$I^{trk}=\sum p_T^{trk} < I_0^{trk}$$
  $N_{p_T>1\,GeV}^{trk/\pi^0}=0$   $I^{\pi^0}=\sum p_T^{\pi^0} < I_0^{\pi^0}$ 



# CDF Tau Triggers

- Lepton+Track Triggers:
  - Central lepton (e or  $\mu$ )  $p_T > 8$  GeV
  - Additional isolated track (seed for  $\tau$ )  $p_T > 5$  GeV
  - Target signature:  $\tau_e + \tau_h + X$ ,  $\tau_{\mu} + \tau_h + X$
- Di-Tau:
  - $-E_{\rm T}^{\rm cal}>10~{\rm GeV}$
  - $-P_{T}^{\text{seed}}>10 \text{ GeV}$
  - 10-30<sup>o</sup> 2D track iso in Level 2
- Tau-MET:
  - $E_T^{cal} > 20 \text{ GeV}$
  - Missing E<sub>T</sub>>20 GeV
  - 10-30<sup>o</sup> 2D track iso in Level 2



# Tau Backgrounds

- Backgrounds misidentified as taus:
  - QCD Jets
  - Electrons that shower late or with strong Bremstrahlung
  - Muons interacting in the calorimeter
- Typical fake rates:
  - Jets  $\sim 0.5-1\%$
  - Electrons  $\sim 10^{-3}$
  - Muons ~10-4



- Plots shows fake rate as a function of calorimeter cluster energy for taus with  $P_T(\text{tracks}+\pi^0\text{s})>25 \text{ GeV}$ 
  - Note that the two are correlated

#### Electroweak: W→τν

- By far the largest and cleanest source of taus at the Tevatron
- First CDF analysis exploring taus
- Goal:  $g_{\tau}/g_{e}$  test of lepton universality



- Tau:  $P_T(\text{tracks}+\pi^0\text{s}) > 25 \text{ GeV}$
- MET>25 GeV
- Events with extra jets ET>5 GeV  $|\eta|<2.4$  are vetoed
- Good agreement with the MC expectation

#### Electroweak: W→τν

- Lepton Universality:
  - Extract  $g_{\tau}/g_{e}$  from the ratio of  $W \rightarrow \tau \nu$  and  $W \rightarrow e \nu$  cross-sections
  - Many systematicuncertainties cancel out
  - Significant improvement over Run I
  - Will improve with more statistics

$$\frac{g_{\tau}}{g_e} = 0.99 \pm 0.04$$



#### Electroweak: Z → ττ

- Why bother?
  - Cross-section: never measured at Tevatron
  - Largest irreducible background to most of the searches
  - Testing ground for estimating other backgrounds and tuning efficiencies
    - Low systematics means better reach for new physics

## Selection and Efficiencies

| Acceptance     | Tau: P <sub>T</sub> >15 GeV Ele: E <sub>T</sub> >10 GeV  | 5.48±1.1(stat)±1.5(syst)%      |
|----------------|----------------------------------------------------------|--------------------------------|
|                | Both in central fiducial region                          |                                |
| Ele ID Cuts    | Standard CDF ID, Track Isolation                         | 72.1±1.0(stat)±3.1(syst)%      |
| Tau ID Cuts    | M(trk+ $\pi$ 0), Isolation(trk, $\pi$ 0), anti-electron, | 55.6±1.6(stat)±2.2(syst)%      |
| Event Topology | MT, HT: tight cuts against QCD, W+jets                   | $47.2\pm2.3(stat)\pm3.5(syst)$ |
| Total:         |                                                          | ~1.0 %                         |





## **Background Estimation**

- Avoid relying on MC simulation of jet-tau fake rates
  - e.g. track multiplicities in quark/gluon jets are off in both
     Pythia and Herwig
- Traditionally, we have been using jet-to-tau fake rates extracted from jet data, but
  - difficult to estimate fake rate with better than ~30% systematic uncertainty
  - One solution: suppress QCD to a very low level, so that 30% would not matter.
    - Often not possible
    - Signal statistics suffers dramatically
- Z→ττ analysis: attempt a data-driven approach to separate backgrounds and address them one-by-one.

## QCD, γ+jet, EWK Backgrounds

- QCD jet production:
  - Electron is a "fake" inside a jet
    - $\pi^0$  inside jet $\rightarrow \gamma \gamma \rightarrow$  conversion electron
    - Semi-leptonic b-jet decays
  - Typically has flat isolation distribution,
     e.g. see plot for LS (like-sign) events
  - Can extrapolate
- γ+jet(s):
  - real isolated electron or a converted photon escaping tagging
  - Study tagged converting γ+jet data
  - Fit the excess of isolated LS events over extrapolated QCD or use conversion tagging efficiency
- Z→ee (strong bremming electron), top, diboson:
  - Can get reliably from MC





## Z vs W+jet Separation

- W+jet with the cuts used is not that large, but hard to estimate
- Use transverse mass  $M_T(e,MET)$  and  $\pi^0$  isolation
- Assume scaling of W's



- Multi-dimensional fit in all 4 regions
  - Include all other backgrounds (QCD, EWK,  $\gamma$ +jet)
  - Use Z fractional efficiencies (derived from MC+Data)

Final  $\sigma(Z)*Br(Z\to \tau\tau) = 242+48(stat)+26(syst)+15(lumi) pb^{-1}$ 

Z→ττ: Mass and N<sub>trk</sub>





- Multiplicity: remove OS requirement
  - γ+jet shape is based on γ(→ee)+τ-candidate sample
  - Classic tau signature is quite evident even without OS cut

## Z→ττ: Kinematics





- Electron E<sub>T</sub> and Tau P<sub>T</sub> distributions for OS data
- Shows need of tau reconstruction efficiency improvement at P<sub>T</sub>~15-25 GeV

## MSSM H→ττ





#### MSSM Higgs:

- Cross-section enhancement at large tanβ
- Large NNLO corrections
- Additional interest in light of high mass di-tau event in Run I

## MSSM H→ττ

- eτ, μτ, ττ channels combined
- Slightly tighter tau ID cuts to further suppress backgrounds
- Fake rate technique for jet-induced backgrounds



- Clean tau signature
- Backgrounds dominated by Z →ττ
- Look for excess in the mass plane (next slide)

## MSSM H→ττ

- 200 pb<sup>-1</sup> Search:
  - No excess is found
  - Limit on the cross-section is set
- Will be updating regularly as more data available





# High Mass Z'→ττ

- Analysis similar to MSSM Higgs, but look for signal in higher mass region
- No excess is found. Limit is set on Z'
- Will be updating regularly with more data





## SUSY Tri-Leptons

mSUGRA trilepton production:

$$p\overline{p} \to \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \to (\nu \widetilde{l})(l\widetilde{l}) \to (\nu l\widetilde{\chi}_1^0)(ll\widetilde{\chi}_1^0)$$





- Large tanβ is theoretically motivated
- At tanβ >8 final state leptons are dominated by τ's.
- Tau channels are very important!

## **SUSY Tri-Leptons**



- We explore several points in SUSY parameter space, one point is at LEP-2 limit
  - Spectrum is very soft and acceptance is low
  - Expect 2 ev/fb<sup>-1</sup> for trilepton search
- Search for Like-Sign Dileptons (LSD) yields
   ~3-4 ev/fb<sup>-1</sup>, but backgrounds are high
  - Lots of work and Lumi is needed
  - Consider scenarios without universality of sfermion masses

# RPV SUSY Stop/LQ<sub>3</sub>

- If R-Parity is violated, stop→τb is allowed
- Kinematics/x-section are the same as 3<sup>rd</sup> generation scalar LeptoQuark





- Analysis very similar to  $Z \rightarrow \tau \tau$
- $H_T' = p_T^e + p_T^{\tau} + MET > 85 \text{ GeV}$
- Results out in November
- Large improvement in the reach is expected:
  - Run I stop: M>122 GeV
  - Run I scalar LQ: M>90 GeV
- Limits on Technicolor will follow

2004

## Double Charged H++

- Appears in LR-symmetric SUSY models
- Couples to leptons only
- No experimental constraints for H++ decaying to taus
- Pair produced at the Tevatron
- Cross-section of the order of 400-100 fb for M(H)= 80-130 GeV
- Both H's have high P<sub>T</sub>:
  - high acceptance
  - low backgrounds
- Results in early 2005



## Summary and Plans

- Tau Program at CDF is well underway
  - Good control of efficiency and backgrounds
  - First preliminary physics results are out
    - Z cross-section, MSSM Higgs search, High mass Z'
  - More results out in Winter'05
    - Stop search,  $3^{rd}$  generation LQ, H++, updated Z $\rightarrow \tau\tau$
  - mSUGRA tri-leptons will require more time and luminosity
- Planned improvements:
  - expanding triggers to higher pseudo-rapidity
  - Improving efficiency at intermediate P<sub>T</sub>~15-30 GeV
- All this work helps build experience for LHC era