

TAU RESULTS AT DØ

- tau identification in hadronic modes
- Z→TT cross section measurement
- R-parity violated susy with λ_{133} coupling

Anne-Catherine Le Bihan for the DØ collaboration

Tau04 workshop september 17, Nara Japan

DØ detector

Tau identification in hadronic modes

A tau candidate consists of:

- a calorimeter cluster found by simple cone algorithm (cone size R= 0.3, isolation cone R=0.5)
- sub-clusters in the electromagnetic layers of the calorimeter, if π^0 are among the tau decay products
- tracks in an 0.5 cone consistent with tau mass

Hadronic T: type classification

conversions

The hadronic T candidate can be classified into 3 categories, according to the detector response:

- type I : T→πν type : I track,
 CAL cluster, no EM sub-cluster
- type 2: τ→ρν type : I track,
 CAL cluster and EM sub-cluster
- type 3:3 prongs type: at least 2 tracks

inter-cryostat region with less EM layers

Tau 04 workshop Tau Results at D0 A-C Le Bihan

Neural networks for tau-Id

- three separate neural networks (NN), one for each tau type
- discriminating input variables based on shower shape, isolation, core, energy fractions, sub-clusters in the EM layers of the calorimeter, additional tracks found in an 0.5 cone not attached to the T ... exploit the fact that T are narrow, isolated jets with less associated particles than QCD jets
- most of input variables are ratios of energy to minimize dependence on E_T.
- used NN package from ROOT which uses vanilla back propagation method
- training samples :
 - signal: 100,000 MC single taus distributed uniformly in pseudo-rapidity and visible p_T overlaid on a minimum bias event
 - background : QCD jets in events with non isolated muons (data)

Neural networks for tau-Id

Background: tau candidates in events with non isolated muons

Efficiencies NN>0.8:

	type l	type 2	type 3
background	0.145 ± 0.014	0.042 ± 0.004	0.039 ± 0.02
z→tt	0.78 ± 0.03	0.74 ± 0.015	0.73 ± 0.02

Some input variables of neural networks

Profile:

 $(E_{T1}+E_{T2})/E_{T}$ ratio of the transverse energies of the 2 most energetic towers in calorimeter cluster to the total transverse energy of the cluster

QCD data

∑p_T additional tracks in isolation cone not attached to the T

Z→TT cross section measurement

- Production dominated by qq
- Z→TT: 3% of total Z production cross section
- Look at Z→ τ_{e/hadr} requiring a simple muon trigger
- $Z \rightarrow \tau_{e/hadr}$ ~0.14 fraction of $Z \rightarrow \tau \tau$

I high pT isolated $\,$, oppositely charged to the τ

$Z \rightarrow \tau \tau \rightarrow \tau_{e/hadr}$ event selection

* Single muon trigger:

_ LI : scintillator and wire requirement

L3: track requirement with p_T>10 GeV

* muon requirements:

one isolated muon

$$P_T() > 12 \text{ GeV/c}$$

* tau requirements:

_ NN output > 0.8

cluster width < 0.25

type I & 3 : $E_T(\tau)$ > I0 GeV, $\Sigma p_T(trk)$ > 7 GeV

type 2 : $E_T(\tau)$ > 5 GeV, $\Sigma p_T(trk)$ > 5 GeV

* event selection:

_ the τ candidate has opposite sign to the (type 3 & 2 tracks : 2 same sign tracks only)

 $|\varphi(\tau)-\varphi(\)| > 2.5$

Backgrounds to $Z \rightarrow \tau \tau \rightarrow \tau_e/hadr$

- QCD w/ mainly from bb not removed by isolation requirement
 - removed by subtracting equal sign (ES) -τ pairs from opposite sign (OS)
 distributions, corrected by a factor of 4% for the excess of OS over ES expected
 for QCD background
- $Z/\gamma^* \rightarrow$ with one misidentified as a τ
 - _ removed by applying a cut on the E deposited in the coarse hadronic layers around the track, should deposit more E in the coarse hadronic layers than a τ
- W \rightarrow v+ jets with one jet misidentified as a T
 - _ estimate contribution in data sample with one isolated , p_T () > 20 GeV/c, 0.2<NN<0.8, |φ(τ)-φ()|<2, where we don't expect much Z→ττ signal.
 - expect excess of OS events because high percentage of W→ v+ jets comes from quark jets
 - solve equations to estimate N_W

known OS/ES excesses

$$N_W + N_{QCD} = N_{OS} + N_{ES}$$

 $0.26 * N_W + 0.02 * N_{QCD} = N_{OS} - N_{ES}$ N_W

Tau 04 workshop Tau Results at D0 A-C Le Bihan

Extracting σ*Br measurement

- the total background in 0S events is estimated by summing 1.04*ES, W \rightarrow v(MC), Z/ γ^* \rightarrow
- Data = OS estimated background

8562 τ – pairs selected with NN cut > 0.3 1946 OS τ – pairs selected with NN cut > 0.8

48
$$\pm$$
 14 W \rightarrow v + jets
81 \pm 17 Z/ $\gamma \rightarrow$
909 \pm 18 QCD w /

final selection 1946 events with ~ 55% background

Event efficiencies for the different types of T (including branching ratios):

- * type 1 : 0.35 %
- * type 2:1.61 %
- * type 3:0.79 %

Selected tau, muon transverse momenta and invariant masses

Check input distributions of NN

Fit $Z \rightarrow \tau\tau$ content in OS $-\tau$ pairs $(|\phi(\tau)-\phi(\cdot)| >$ 2.7)
from pT shape

Tau candidate pT after NN cut

cluster width after NN cut

 \sum pT additional tracks / \sum pT all tracks after NN cut

cluster profile after NN cut

Tau 04 workshop Tau Results at D0 A-C Le Bihan

Result on σ^*Br for $Z \rightarrow \tau\tau$

$$\square *BR = \frac{N_{evts} \square N_{bkg}}{\square_{otal} * \square Ldt}$$

- N_{evts}: number of events observed
- N_{bkg}: number of background estimated
- JLdt: luminosity: 207± 13,5 pb⁻¹
- ε_{total}: total efficiency

$$\epsilon_{\text{total}} = \epsilon_{\text{evt}}^* \epsilon_{\text{trig}}^* \Delta (\text{MC-data})$$

= (0.0275±0.0004) *(0.65±0.02)*(0.925±0.032)

Systematic errors due to trigger, data/MC corrections factors, energy scale, NN, background estimate

$$\sigma^* Br(Z \to \tau \tau) = 256 \pm 16(stat) \pm 17(sys) \pm 16(lumi) pb$$

R-parity violating supersymmetry with λ_{133} coupling

Extension of MSSM superpotential

violates conservation of R-parity

$$R_p = (\Box 1)^{L+2B+3S}$$

Susy particles produced in association with gauge couplings mainly $\prod_{1}^{0}\prod_{1}^{\pm}$

LSP decays in SM particles:

Final states with λ_{133} coupling :

$$2 \tau + 2$$
 electrons + E_T
 $3 \tau + 1$ electron + E_T

 $4 \tau + E_T$

→ Look for 2 isolated electrons plus at least 1 hadronic τ

Event selection

- * 2 electrons with M_{ee} > 18 GeV/c²
- * M_{ee}< 80 GeV/c²
- * at least one hadronic T of type I or 2, identified with NN cuts, veto on electrons and muons applied

$$* \quad \mathbb{E}_T / \sqrt{SE_T} > 1.5$$

- \rightarrow signal exhibits moderate E_T
- → takes into account statistical fluctuations of QCD jets mismeasurements
- ightarrow removes Z Drell-Yan with low E_T

0 events selected for 1±1.32 expected from SM and instrumental backgrounds

Preliminary limits

Excluded at 95 % C.L.:

$$m(\prod_{1}^{0}) < 66 \text{ GeV/c}^{2}, m(\prod_{1}^{\pm}) < 119 \text{ GeV/c}^{2} \text{ for } \tan\beta = 10, >0, m_{0} = 80, A_{0} = 0$$

mSUGRA parameter space with stau lighter than \square_1^\pm , expect additional taus from the cascade : $\tan\beta=10$, >0, $m_0=80$, $A_0=0$

~ 2 - 4 events selected in signal

Summary

- Preliminary Z→ττ cross section measurement consistent with SM
 - provides benchmark
 measurement for understanding
 τ-Id
- Preliminary exclusion in mSUGRA parameter space for R-Parity violated susy with λ_{133} coupling

Preliminary studies for $\sigma(t\bar{t})$ in lepton + τ channel, Higgs $\to \tau\tau$, R-Parity violating susy stop $\to \tau b$, trilepton mSUGRA at high tan(β) underway!

* Curves are NNLO calculation from Hamberg, Van Neerven and Matsuura, Nucl. Phys. B359 (1991) 343. [CTEQ4M pdf]

Backup slides

Systematic errors on $\sigma^* Br(Z \to \tau\tau)$ and RPV susy search with λ_{133} coupling

$$\sigma^*Br(Z \rightarrow \tau\tau)$$

cluster width cut < 1 %
Energy scale 2.5 %

NN (excluding energy scale) 2.6 %
QCD background 2 %
background 2 %

V→ v+ jets background 1.7 %

ϵdata/ϵMC (from τ-Id) 2.5 %

ϵdata/ϵMC (from -Id) 2.5 %

Trigger 2 %

Total 6.3 %

- systematic errors on signal were obtained by rescaling in MC E_T and input variables distributions and recalculate NN output after rescaling
- systematic errors for backgrounds :
 - QCD : error of OS/ES estimate
 - W \rightarrow v +jets : difference N_W data / MC predicton

RPV search with λ_{133}

Luminosity 6.5 % backgrounds 5% - 8% $\epsilon_{data}/\epsilon_{MC}$ (from τ -Id) 12.5 % $\epsilon_{data}/\epsilon_{MC}$ (from electron-Id) 2 % Trigger up to 7 %

~ 20 % for signal

- ε_{data}/ε_{MC} (from τ-Id) determined from NN efficiency in data using fit on pT shape to estimate Z→ττ
- errors on background processes from cross sections errors