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Higgs sector of the standard model is

known to be problematic.

Is it possible to construct models without

Higgs?
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The role of the Higgs boson in the SM:

• Renormalizability :

W and Z are gauge bosons (universality of weak interaction).

Explicit breaking of electroweak gauge symmetry makes the theory

non-renormalizable. We need, at least, one Higgs boson so as to

feed W and Z masses through spontaneous breaking.

• Unitarity :

The longitudinal W boson (WL) scattering amplitude grows as

the CM energy increases. If there is no Higgs boson, it eventually

violates the unitarity.
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Life without a Higgs
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Renormalizability :

New physics (cutoff scale of SM) is believed to exist at TeV. In

principle, renormalizability is not a primary issue in this sense.

However, the lack of renormalizability usually implies a loss of robust

predictability. How can we ensure the consistency with the existing

precision electroweak measurements without introducing a Higgs

boson then?
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Unitarity:
B.W.Lee, C.Quigg, and H.B.Thacker

In the standard model, a Higgs boson (scalar resonance)

“unitarizes” the WLWL scattering amplitude:
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with

M2
H = λv2, v � 250 GeV.

• WLWL scattering amplitude remains perturbative even at high energy

scale
√
s� 1 TeV thanks to the light Higgs exchange.
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Can a spin-1 resonance unitarize the WLWL scattering amplitude?
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Answer: Yes! if we suitably adjust WWW ′ coupling.
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Cancellation of bad high-energy behavior is achieved through exchange of

massive spin-1 particle W ′.
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Note, however,

we need to introduce yet another massive vector particle W ′′ so as to

unitarize the W ′
LW ′

L → W ′
LW ′

L amplitude ....

⇓
A tower of massive vector particles:

W, W ′, W ′′, W ′′′, · · ·

This situation is naturally realized in gauge theory with an extra

dimension
A tower of massive Kaluza-Klein modes

Chivukula, Dicus and He ; Csaki, Grojean, Murayama, Pilo and Terning

Gauge symmetry breaking through boundary conditions
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Effective Theory in 4D
How can we ensure the consistency with the existing

precision electroweak measurements?
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A three-site Higgsless model
Chivukula, Coleppa, Di Chiara, Simmons, He, Kurachi and M.T., PRD72 075012 (2006);

See also Bando, Kugo, Yamawaki’s HLS model Phys.Rep.164,217(1988).

SU(2) × SU(2) × U(1) gauge theory

• The gauge sector is precisely that of the BESS model. Casalbuoni et al.,

PLB 155 95 (1985))

• Fermion mass terms:

Lf = −λf1ψ̄L0U1ψR1−Mψ̄R1ψL1−f2ψ̄L1U2
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• For simplicity, we examine the case f1 = f2 =
√

2v and work in the

limit

g0

g1
� 1,

g2

g1
� 1, and thus, gW � g0, gY � g1.
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Fermion mass matrix: (seesaw like)⎛
⎝ m 0

M m′
f

⎞
⎠ ≡

√
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⎛
⎝ εL 0

1 εfR

⎞
⎠ , εL ≡ λ
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f

λ̃

Light fermion mass:
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and its eigenstate (or delocalization)
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L

2

)
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where we assumed εfR � 1.

Heavy (KK) fermion mass:
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For M � v, we can integrate out the heavy KK-fermion. The fermion

delocalization effect can then be replaced by an operator

L′
f = −x1ψ̄L(i /DU1 · U †

1 )ψL, x1 ≡ ε2
L, εL =

√
2λv

M

ψL is a left-hand fermion at site-0,

DμψL = ∂μψL − ig0W0μψL.

S-parameter
S =

4π

g2
1

(
1 − 2g2

1

g2
0

x1

)

vanishes in the ideal delocalization limit:

x1 =
g2
0

2g2
1

, gW ′ff = 0.

c.f. Anichini, Casalbuoni, and De Curtis, PLB348 521 (1995).
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Tree level is not enough...
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Fermionic one-loop corrections to T parameter
Chivukula, Coleppa, Di Chiara, Simmons, He, Kurachi and M.T., PRD72 075012 (2006)

αT ≈ 1
16π2
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Assuming ideal delocalization of fermions, we find
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Allowed region in S-T depends on the “reference” Higgs mass MH,ref .

S ≡ SBSM − SSM(MH,ref), T ≡ TBSM − TSM(MH,ref)

αT < 2.5 × 10−3 (5 × 10−3) for MH,ref = 340GeV (1000GeV).

Which MH,ref should we use? We need to evaluate bosonic one-loop

diagrams in order to get more precise bounds.
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One loop constraint from precision electroweak measurements

(95%CL):
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T. Abe, S. Matsuzaki, and M.T., PRD78, 055020 (2008)

The cutoff dependence is small.

Tiny (but non-zero) W ′ff coupling.

16



 1500

 2000

 2500

 3000

 3500

 4000

 4500

 350  400  450  500  550  600  650

M
 (

G
eV

)

MW’ (GeV)

Λ = 4.3 TeV
Λ  = 3.0 TeV

• MW ′ >∼ 380MeV is required by the ZWW measurement at LEP2.

• The cutoff Λ should satisfy

Λ <∼ 4πf1 = 4πf2 = 4.3TeV,

which implies

MW ′ <∼ 600GeV
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LHC phenomenology of W ′
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W ′ production cross sections through W ′WZ vertex:
H.-J. He et al., arXiv:0708.2588
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(a) (b)
100fb−1
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W ′ production cross sections through W ′ff vertex:
T. Ohl and C. Speckner, arXiv:0809.0023
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Summary

• Higgsless theory is an interesting alternative to the standard model

Higgs, achieving tree level unitarity at 1TeV.

• We analyzed an effective theory (three site Higgsless model) at

one-loop level and found the model is consistent with the available

precicion electroweak measurements. The allow ranges of the KK

gauge boson coupling gW ′ff , the KK gauge boson mass MW ′ , and

the KK quark/lepton masses M are severely constrained, however.

• The KK gauge boson W ′ will be discovered at LHC with∫ L = 20 ∼ 30 fb−1.

• Although, in the case of flavor universal KK-fermion mass, FCNC

is protected by GIM mechanism, more study on the flavor physics

should be done in the Higgsless theory.
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