K^oTO beam-line design and beam survey 2009

特定領域「フレーバー物理の新展開研究会」研究会 2009

'09.Mar.9th (Mon) Tetsushi Shimogawa for K^oTO collaboration

J-Parc hadron hall

+30GeV proton beam hits common TI disk target.

★Extraction angle : I6 degree.

- Target image from our experimental area has finite size.
- Neutron momentum is softer than E391a.

Characteristic of K^oTO beam-line.

✦Neutral K⁰L beam-line.

- Sweep out charged particle w/ magnet.
- Long beam-line to remove short lived particle contamination. (K⁰_s, hyperon...)
- Collimate neutral beam.
- Large amount of neutron, $\boldsymbol{\gamma}$ is included neutral beam.

3

The 2 stage long collimators far from target.
Long beam-line to remove hyperon contamination.
The Magnet to sweep out charged particles.
Pb absorber to remove photon contamination.

target Task of collimation system. 30GeV proto ◆Small size K⁰^L beam ("pencil beam") • Reconstructed π^0 assuming decay on the beam-axis.($M_{2y}=M_{\pi 0}$) **P**. +Small halo neutron/K⁰_L beam. (for halo n B.G.) \star • π^0 , η production by halo neutron interact **Signal region** with detector materials. **Z**_{vertex} • "CC02- π^{o} " : π^{o} + energy leakage at CsI. 0.35 • "CV- π^{o} " : π^{o} + extra E at CsI. 0.3 signal region • " $CV-\eta$ " : $M\eta \sim 4M_{\pi 0}$. T(GeV/c) CC01 FB CC02 CC03 MB BCV CV CsI0.1 0.05 350 400 450 500 550 600 Z(cm) reconstructed π^0 vertex (E391a RunII analysis)⁵

+designed with 3 collimation lines.

i)Shouldn't be faced inner surface of collimator to target.

ii)To avoid scattering @rear edge of collimator.

iii)control γ absorber image from inner surface of 2nd collimator.

*Collimator length is changed.

for beam-line survey @ '09 autumn

plan of beam survey '09

+Check performance of beam-line.

- Profile of beam core
 - for collimator alignment/adjustment.
- K^{0}_{L} flux and momentum.
 - → measure K^{0}_{L} → $\pi^{+}\pi^{-}\pi^{0}$ with mini cal. and hodoscope.
 - ▶ measure $K^{0}_{L} \rightarrow \pi^{+}\pi^{-}$ with spectrometer.
- Core neutron momentum with CERBERUS.
- Intensity of γ , charged particle in beam core.
 - prepare several thickness γ absorber.
- Trial of halo neutron measurement.
 - with modified neutron collar counter(modified new CC02).

priority

high

low

Expected performance of profile measurement

- Start consideration with counters used in E391a survey.
- +In E391a, measurement data can be reproduced by M.C..
- However, should improve rate capability and segmentation. • prefer lower intensity.

Rate @ 1% of FULL	Scinti.slab (>0.5MeV)	Scinti.block (>7.3MeV)	Sandwich (>8.8MeV)
with absorber	50 kHz	220 kHz	350 kHz
w/o absorber	800 kHz	3 MHz	12 MHz
		·	$\phi \phi \phi \phi \phi \Delta \Delta \Delta \Box \Delta $

K^o_L measurement motivation

- In current study, we design the beamline with only M.C..
- K⁰_L production cross section is difference in each M.C. package. (Result of FLUKA is about ~3 times larger than GEANT4.)
 We need real data of K⁰_L flux!!

+E39Ia → EI4(K $^{\circ}$ TO)

- extraction angle : $4^{\circ} \rightarrow 16^{\circ}$
- target image : point like \rightarrow finite size

E391a

	K_L Yield per POT
Run-II data	$(1.36 \pm 0.08) \times 10^{-7}$
GEANT3	$(1.32 \pm 0.03) \times 10^{-7}$
GEANT4(QGSP)	$(1.31 \pm 0.11) \times 10^{-7}$
GEANT4(QBBC)	$(1.54 \pm 0.12) \times 10^{-7}$
FLUKA	$(1.40 \pm 0.02) \times 10^{-7}$

E14

result of #. of K0L production in target M.C..

K^{o}_{L} measurement plan 1.

Measure K⁰_L→π⁺π⁻π⁰ with mini cal. and SciFi tracker.
Reconstruction method.

• assuming P_T of $K^0_L = 0.(P_{Kx}=P_{Ky}=0)$

- π^0 reconstruction with detected 2γ in only mini cal.
- obtain φ , θ of π^{\pm} with hodoscope.
- Kinematics
 - $P_{\pi+}sin\theta_{\pi+}cos\phi_{\pi+}+P_{\pi-}sin\theta_{\pi-}cos\phi_{\pi-}+P_{\pi_{0x}}=P_{Kx}$
 - $P_{\pi+}sin\theta_{\pi+}sin\phi_{\pi+}+P_{\pi-}sin\theta_{\pi-}sin\phi_{\pi-}+P_{\pi_{0y}}=P_{Ky}$
 - Simple (no magnet, no chamber)
 - Tracker
 - Scinti+WLSF
 - 1cm pitch
 - 400ch in total
 - Calorimeter
 - · E391a-Csl
 - 25x2 blocks

Expected performance

+obtain ~500 events/day.

- 5% statistics error. ← enough accurate.
- Acceptance doesn't heavily depend on ▶ K⁰L momentum.

Core neutron measurement.

+Confirm neutron flux i2 c@oregited eutroon firm n/K⁰L)

• Neutron fflux Andispectivencl Measurense (factor of ~2)

Expected performance of CERBERUS

+Separate n/γ with "F/T ratio".

• F/T ratio: visible energy ratio in E.M. part & hadron part.

+Recovery test \rightarrow work well!!

- test each module of CERBERUS with cosmic-ray. \rightarrow Done.
- test E.M. part with e^+ beam at LNS. \rightarrow Done.

Halo neutron measurement.

Summary

- +Design the neutral beam-line with small halo n/K^0_L using M.C..
- +Suppress halo neutron with 3 collimation line.
 - halo-n B.G./signal $\rightarrow \sim 0.05$
- *Beam-line design is finished!!
 - Start fabrication of beam-line materials.
 - Finish construction until Sep.'09.
- +beam-survey '09.
 - Prepare various measurement in beam-survey at '09.
 - ▶ profile measurement in core region.
 - ▶ 2 method K⁰_L measurement.
 - ▶ core/halo neutron measurement. etc...
 - Preparing detector for beam-survey.