Higgs or Higgsless? From a unitarity viewpoint

Workshop "New Developments of Flavor Physics" 2009 @ Gamagohri

Masaharu Tanabashi (Nagoya U.)

March 10, 2009

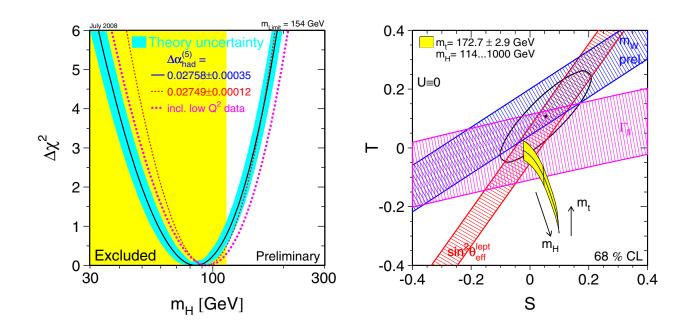
Higgs sector of the standard model is known to be problematic.

Is it possible to construct models without Higgs?

The role of the Higgs boson in the SM:

Renormalizability :

W and Z are gauge bosons (universality of weak interaction). $Explicit\ breaking\ of\ electroweak\ gauge\ symmetry\ makes\ the\ theory\ non-renormalizable.$ We need, at least, one Higgs boson so as to feed W and Z masses through $spontaneous\ breaking$.


Unitarity :

The longitudinal W boson (W_L) scattering amplitude grows as the CM energy increases. If there is no Higgs boson, it eventually violates the unitarity.

Life without a Higgs

Renormalizability:

New physics (cutoff scale of SM) is believed to exist at TeV. In principle, renormalizability is not a primary issue in this sense. However, the lack of renormalizability usually implies a loss of robust predictability. How can we ensure the consistency with the existing precision electroweak measurements without introducing a Higgs boson then?

Unitarity:

B.W.Lee, C.Quigg, and H.B.Thacker

In the standard model, a Higgs boson (scalar resonance) "unitarizes" the W_LW_L scattering amplitude:

For $E \gg M_W$

$$\mathcal{M}(W_L^a W_L^b \to W_L^c W_L^d) = \frac{s}{v^2} \frac{M_H^2}{M_H^2 - s} \delta^{ab} \delta^{cd} + \frac{t}{v^2} \frac{M_H^2}{M_H^2 - t} \delta^{ac} \delta^{bd} + \frac{u}{v^2} \frac{M_H^2}{M_H^2 - u} \delta^{ad} \delta^{bc},$$

with

$$M_H^2 = \lambda v^2, \qquad v \simeq 250 \text{ GeV}.$$

• $W_L W_L$ scattering amplitude remains perturbative even at high energy scale $\sqrt{s} \gg 1$ TeV thanks to the light Higgs exchange.

Can a spin-1 resonance unitarize the W_LW_L scattering amplitude?

Answer: Yes! if we suitably adjust WWW' coupling.

$$\mathcal{M}(W_L^a W_L^b \to W_L^c W_L^d) = \frac{1}{3v^2} \left((s - u) \frac{M_{W'}^2}{M_{W'}^2 - t} + (s - t) \frac{M_{W'}^2}{M_{W'}^2 - u} \right) \delta^{ab} \delta^{cd} + \cdots$$

Cancellation of bad high-energy behavior is achieved through exchange of massive spin-1 particle W'.

Note, however,

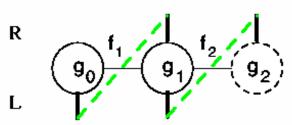
we need to introduce yet another massive vector particle W'' so as to unitarize the $W'_LW'_L\to W'_LW'_L$ amplitude

A tower of massive vector particles:

$$W, W', W'', W''', \cdots$$

This situation is naturally realized in gauge theory with an *extra* dimension

A tower of massive Kaluza-Klein modes


Chivukula, Dicus and He; Csaki, Grojean, Murayama, Pilo and Terning

Gauge symmetry breaking through boundary conditions

Effective Theory in 4D

How can we ensure the consistency with the existing precision electroweak measurements?

A three-site Higgsless model Chivukula, Coleppa, Di Chiara, Simmons, He, Kurachi and M.T., PRD72 075012 (2006); See also Bando, Kugo, Yamawaki's HLS model Phys.Rep.164,217(1988).

$$SU(2) \times SU(2) \times U(1)$$
 gauge theory

- The gauge sector is precisely that of the BESS model. Casalbuoni et al., PLB 155 95 (1985))
- Fermion mass terms:

$$\mathcal{L}_f = -\lambda f_1 \bar{\psi}_{L0} U_1 \psi_{R1} - M \bar{\psi}_{R1} \psi_{L1} - f_2 \bar{\psi}_{L1} U_2 \begin{pmatrix} \lambda'_u \\ \lambda'_d \end{pmatrix} \begin{pmatrix} u_{R2} \\ d_{R2} \end{pmatrix} + \text{h.c.}.$$

ullet For simplicity, we examine the case $f_1=f_2=\sqrt{2}v$ and work in the limit

$$rac{g_0}{g_1} \ll 1, \quad rac{g_2}{g_1} \ll 1, \quad ext{ and thus, } \quad g_W \simeq g_0, \quad g_Y \simeq g_1.$$

Fermion mass matrix: (seesaw like)

$$\begin{pmatrix} m & 0 \\ M & m'_f \end{pmatrix} \equiv \sqrt{2}\tilde{\lambda}v \begin{pmatrix} \varepsilon_L & 0 \\ 1 & \varepsilon_{fR} \end{pmatrix}, \quad \varepsilon_L \equiv \frac{\lambda}{\tilde{\lambda}}, \quad \varepsilon_{fR} \equiv \frac{\lambda'_f}{\tilde{\lambda}}$$

Light fermion mass:

$$m_f \simeq \frac{m m_f'}{\sqrt{M^2 + m_f'^2}} = \frac{\sqrt{2\lambda v \varepsilon_L \varepsilon_{fR}}}{\sqrt{1 + \varepsilon_{fR}^2}}$$

and its eigenstate (or delocalization)

$$\psi_L^{f,\text{light}} \simeq -\left(1 - \frac{\varepsilon_L^2}{2}\right)\psi_{L0}^f + \varepsilon_L\psi_{L1}^f$$

where we assumed $\varepsilon_{fR} \ll 1$.

Heavy (KK) fermion mass:

$$M_{f,KK} \simeq \sqrt{M^2 + m_f'^2} = \sqrt{2}\tilde{\lambda}v\sqrt{1 + \varepsilon_{fR}^2}$$

For $M\gg v$, we can integrate out the heavy KK-fermion. The fermion delocalization effect can then be replaced by an operator

$$\mathcal{L}_f' = -x_1 \bar{\psi}_L (i \not\!\!D U_1 \cdot U_1^{\dagger}) \psi_L, \qquad x_1 \equiv \varepsilon_L^2, \quad \varepsilon_L = \frac{\sqrt{2\lambda v}}{M}$$

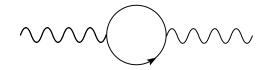
 ψ_L is a left-hand fermion at site-0,

$$D_{\mu}\psi_{L} = \partial_{\mu}\psi_{L} - ig_{0}W_{0\mu}\psi_{L}.$$

S-parameter

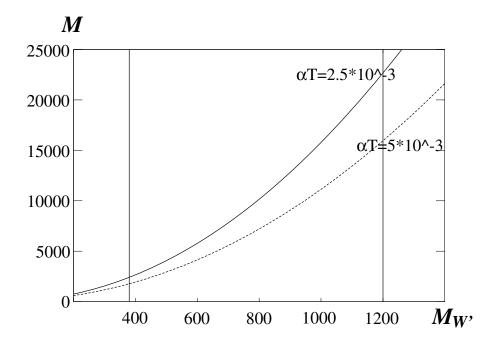
$$S = \frac{4\pi}{g_1^2} \left(1 - \frac{2g_1^2}{g_0^2} x_1 \right)$$

vanishes in the ideal delocalization limit:


$$x_1 = \frac{g_0^2}{2g_1^2}, \qquad g_{W'ff} = 0.$$

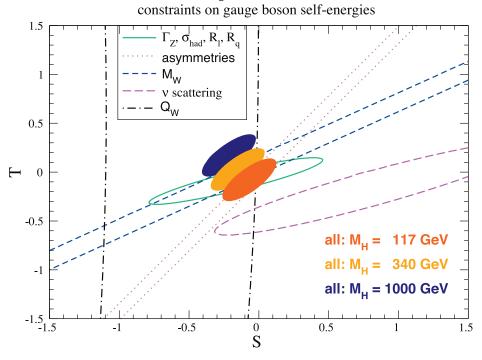
c.f. Anichini, Casalbuoni, and De Curtis, PLB348 521 (1995).

Tree level is not enough...

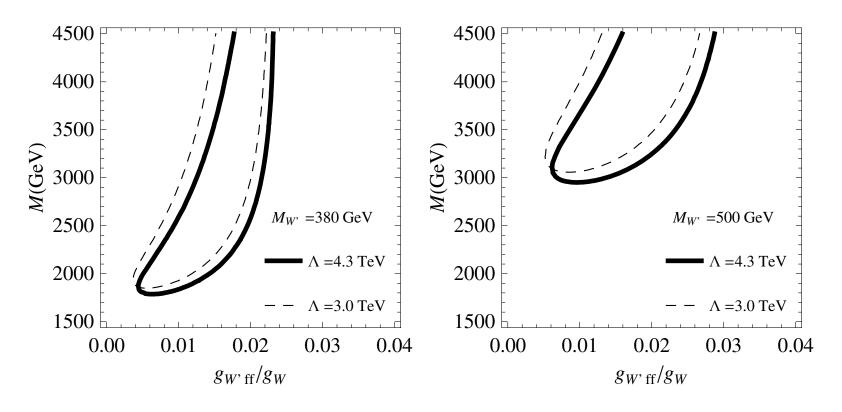

Fermionic one-loop corrections to T parameter

Chivukula, Coleppa, Di Chiara, Simmons, He, Kurachi and M.T., PRD72 075012 (2006)

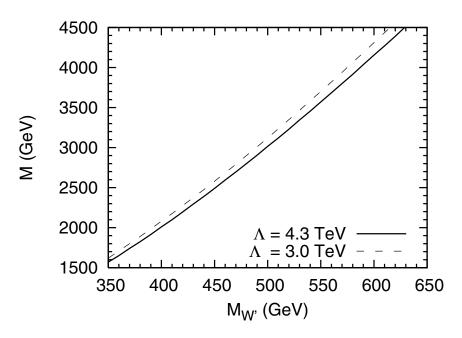
$$\alpha T \approx \frac{1}{16\pi^2} \frac{{m'_t}^4}{M^2 v^2} = \frac{1}{16\pi^2} \frac{\varepsilon_{tR}^4 M^2}{v^2} .$$


Assuming ideal delocalization of fermions, we find

Allowed region in S-T depends on the "reference" Higgs mass $M_{H,ref}$.


$$S \equiv S_{\text{BSM}} - S_{\text{SM}}(M_{H,\text{ref}}), \qquad T \equiv T_{\text{BSM}} - T_{\text{SM}}(M_{H,\text{ref}})$$

Oblique Parameters


 $\alpha T < 2.5 \times 10^{-3}$ (5 × 10⁻³) for $M_{H,\mathrm{ref}} = 340 \mathrm{GeV}$ (1000 GeV). Which $M_{H,\mathrm{ref}}$ should we use? We need to evaluate bosonic one-loop diagrams in order to get more precise bounds.

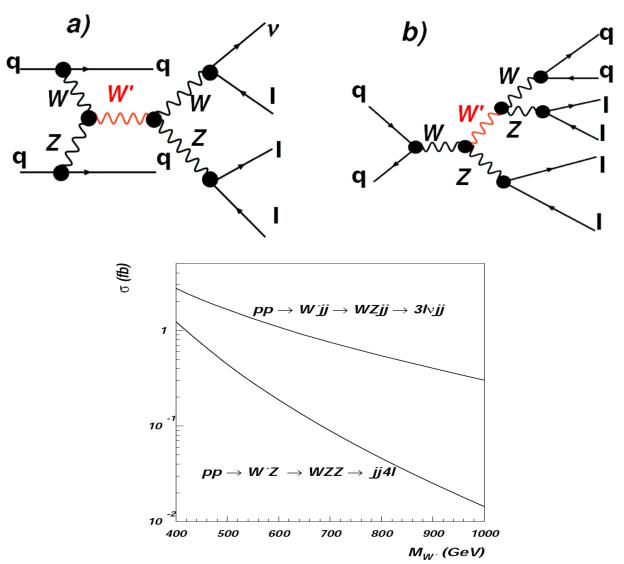
One loop constraint from precision electroweak measurements (95%CL):

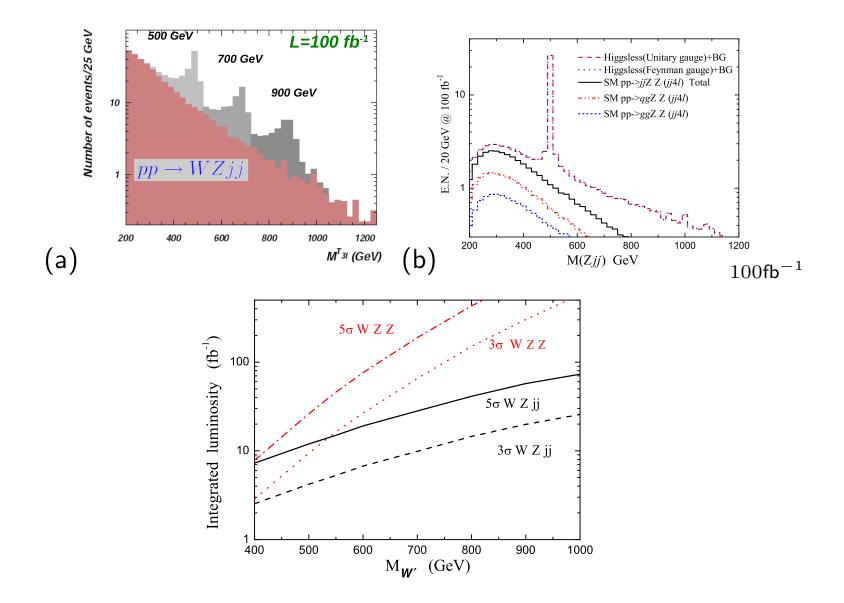
T. Abe, S. Matsuzaki, and M.T., PRD78, 055020 (2008)

The cutoff dependence is small. Tiny (but non-zero) W'ff coupling.

- $M_{W'} \gtrsim 380 {
 m MeV}$ is required by the ZWW measurement at LEP2.
- ullet The cutoff Λ should satisfy

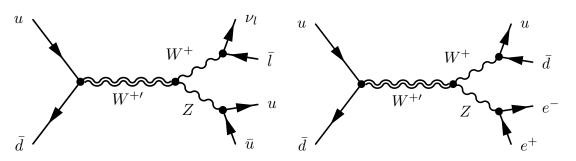
$$\Lambda \lesssim 4\pi f_1 = 4\pi f_2 = 4.3 \text{TeV},$$

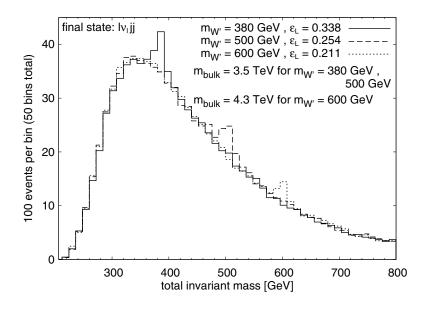

which implies

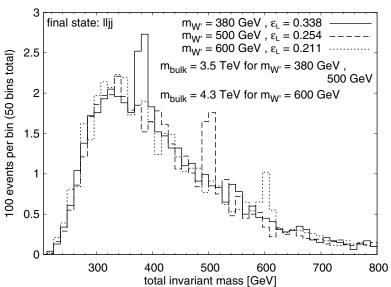

$$M_{W'} \lesssim 600 {
m GeV}$$

LHC phenomenology of W'

W' production cross sections through W'WZ vertex:


 $H.-J.\ He\ et\ al.,\ arXiv:0708.2588$





W' production cross sections through W'ff vertex:

T. Ohl and C. Speckner, arXiv:0809.0023

 $100 {
m fb}^{-1}$

Summary

- Higgsless theory is an interesting alternative to the standard model Higgs, achieving tree level unitarity at 1TeV.
- We analyzed an effective theory (three site Higgsless model) at one-loop level and found the model is consistent with the available precicion electroweak measurements. The allow ranges of the KK gauge boson coupling $g_{W'ff}$, the KK gauge boson mass $M_{W'}$, and the KK quark/lepton masses M are severely constrained, however.
- The KK gauge boson W' will be discovered at LHC with $\int \mathcal{L} = 20 \sim 30 \text{ fb}^{-1}$.
- Although, in the case of flavor universal KK-fermion mass, FCNC is protected by GIM mechanism, more study on the flavor physics should be done in the Higgsless theory.