Cherenkov detector R&D for super B factory

- Introduction
- Prototype development
- Performance test
- Summary

K. Inami (Nagoya university)

Current Belle detector

Belle PID upgrade

- PID (K/ π) detectors
 - Barrel PID and Aerogel RICH counters are both Cherenkov ring imaging detectors.
 - dE/dx in drift chamber

TOP counter

- Cherenkov ring in quartz bar
 - Reconstruct ring image using ~20 photons on the screen reflected inside the quartz radiator as a DIRC.
 - Photons are detected with photon detectors.

TOP counter • 2D position information \rightarrow Position+Time • Compact detector! V Linear array PMT (~5mm) Time resolution σ -40ps

Simulation

TOP counter

- Quartz: 255cm^L x 40cm^W x 2cm^T
 - Focus mirror at 47.8deg.
 to reduce chromatic dispersion
- Multi-anode MCP-PMT

- Linear array (5mm pitch), Good time resolution (<~40ps)
- → Measure Cherenkov ring image with timing information

Expected performance

- K/π separation power
 - GaAsP photo-cathode + Focusing mirror

Prototype development

Demonstration of the performance

Photon detector

- Square-shape multi-anode MCP-PMT
 - Single photon detection
 - Fast raise time: ~400ps
 - Gain=1.5x10⁶ @B=1.5T
 - T.T.S.(single photon): ~35ps @B=1.5T
 - Position resoltion: <5mm
- Semi-mass-production (14 PMTs)

PMT module

- HV divider + AMP + Discriminator
- Small size (28mm^W)
- Prototype
 - Fast AMP (MMIC, 1GHz, x20)
 - Fast comparator (180ps propagation)

input

- CFD with pattern delay
- Performance
 - Test pulse
 - ~5ps resolution
 - MCP-PMT
 - σ<40ps
 - Working well

Quartz radiator

- Check the quality for time resolution
 - Single photon pulse laser
 - λ=407nm
 - MCP-PMT
 - Several incident position
- → No degradation of time resolution
 - Enough quartz quality

Chromatic dispersion effect

Variation of propagation velocity depending on the wavelength of Cherenkov photons

- Range of detectable wavelength of Cherenkov photons
 - → Time fluctuation of the Cherenkov ring image

 \rightarrow Time resolution depends on the propagation length.

Beam test

- At Fuji beam line in June and Dec.
- Using real size quartz and MCP-PMT
 - MCP-PMT: Multi-alkali p.c., C.E.=60%

Number of detected photons

- Normal incidence (90 deg.)
- Obtained number of photons as expected
- \rightarrow We can expect ~22 photons/event, if we use 14 PMTs.
 - Normalized by active area (10 \rightarrow 14 PMTs)

Time resolution

- top 2D Entries 500000 TDC distribution of ch.29 Compare with the distribution expected by a simulation including PMT resolution and chromatic dispersion effect 100 250 Simulation 250 Data 1 st **2**rd 200 2rd **1** st 200 Focus **7**nd mirror 150 quartz 150 100 100 Beam 50 50 (875mm) 1850mm Դերհես 440 200 300 320 220 240 260 280 300 340 320 340 360 380 400 420 [1count/25ps] [1count/25ps] 875m 7nd Resolution(1st peak) 76.0 ± 2.0 [ps] Data MCP-PMT(ch29) Simulation 77.7 ± 2.3 [ps]

Time resolution vs. propagation length

- Check time resolution
 - For several incidence condition and channel

- Data agrees well with simulation expectation.
 - \rightarrow Confirmed the level of chromatic dispersion effect

Summary

- R&Ds of Cherenkov detectors are in progress!
 - TOP counter for barrel PID upgrade at super B factory
 - Cherenkov ring imaging with precise timing information (σ <40ps)
- Prototype development
 - Multi-anode MCP-PMT
 - 14 prototype PMTs show enough performance
 - TTS < 40ps for single photon for all channels
 - Integrated module with amplifier and CFD
 - Quartz radiator
 - Enough quartz quality for single photon detection
- Performance test with beam
 - Proper ring image, number of detected photons (15.7 photons)
 - Time resolution as expected by simulation
 - → Confirmed chromatic dispersion effect